Applications of the Mittag-Leffler function in solvability and stability of a class of fractional Langevin equations with two fractional orders

被引:7
|
作者
Baghani, Hamid [1 ]
Nieto, Juan J. [2 ]
机构
[1] Hakim Sabzevari Univ, Fac Math & Comp Sci, Dept Pure Math, Sabzevar, Iran
[2] Univ Santiago de Compostela, Dept Stat Math Anal & Optimizat, CITMAga, Santiago De Compostela 15782, Spain
来源
JOURNAL OF ANALYSIS | 2024年 / 32卷 / 02期
关键词
Caputo fractional derivative; Three-point boundary conditions; Existence and uniqueness; Fractional Langevin equation; Hyers-Ulam stability; LINEAR-DIFFERENTIAL EQUATIONS; MONOTONE ITERATIVE TECHNIQUE; HYERS-ULAM STABILITY; UNIQUENESS; EXISTENCE; CONSTANT;
D O I
10.1007/s41478-023-00669-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study focuses on the solvability and Hyers-Ulam stability of a particular class of fractional Langevin equations with two fractional orders. Utilizing the Mittag-Leffler functions, we present a representation of the general solution for the problem. Our approach offers significant technical advantages compared to existing literature. Furthermore, we furnish illustrative examples, employing specific parameters, to showcase the existence of a unique solution and its Hyers-Ulam stability even under less restrictive conditions.
引用
收藏
页码:915 / 929
页数:15
相关论文
共 50 条
  • [41] Analysis of fractional differential equations with fractional derivative of generalized Mittag-Leffler kernel
    Mohammed Al-Refai
    Abdalla Aljarrah
    Thabet Abdeljawad
    Advances in Difference Equations, 2021
  • [42] Analysis of fractional differential equations with fractional derivative of generalized Mittag-Leffler kernel
    Al-Refai, Mohammed
    Aljarrah, Abdalla
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [43] Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Huang, Lan-Lan
    APPLIED MATHEMATICS LETTERS, 2018, 82 : 71 - 78
  • [44] Fractional Differintegral Operators of The Generalized Mittag-Leffler Function
    Gupta, Anjali
    Parihar, C. L.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2015, 33 (01): : 137 - 144
  • [45] On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations
    Kilbas, AA
    Saigo, M
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1996, 4 (04) : 355 - 370
  • [46] Mittag-Leffler and Pade approximations to stiff fractional two point kinetics equations
    Aboanber, Ahmed E.
    Nahla, Abdallah A.
    El Mhlawy, Ashraf M.
    PROGRESS IN NUCLEAR ENERGY, 2018, 104 : 317 - 326
  • [47] Generalized Mittag-Leffler quadrature methods for fractional differential equations
    Yu Li
    Yang Cao
    Yan Fan
    Computational and Applied Mathematics, 2020, 39
  • [48] Properties of ψ-Mittag-Leffler fractional integrals
    Oliveira, D. S.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 233 - 246
  • [49] Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution
    Araci, Serkan
    Rahman, Gauhar
    Ghaffar, Abdul
    Azeema
    Nisar, Kottakkaran Sooppy
    MATHEMATICS, 2019, 7 (03):
  • [50] Generalized Mittag-Leffler quadrature methods for fractional differential equations
    Li, Yu
    Cao, Yang
    Fan, Yan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):