Self-Powered Piezoelectric Actuation Systems Based on Triboelectric Nanogenerator

被引:4
|
作者
Zheng, Zhipeng [1 ]
Wang, Binquan [1 ]
Yin, Hao [1 ]
Chen, Yujie [1 ]
Bao, Yi [2 ]
Guo, Yiping [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Naval Med Univ, Changzheng Hosp, Dept Endocrinol & Metab, Shanghai 200443, Peoples R China
关键词
charge driven; discharging; liquid transport; piezoelectric actuators; triboelectric nanogenerators; HYSTERESIS; INTERNET; THINGS;
D O I
10.1002/adfm.202302648
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sustainable power supply via triboelectric nanogenerator (TENG) is attractive for self-powered actuation systems in the era of the Internet of Things (IoTs). Herein, a low-power actuation scheme enabled by the multilayered TENG for piezoelectric actuators, including the stack, unimorph, and micro-fiber composite (MFC) actuator, is reported. The working principles of TENG-powered piezoelectric actuators and their displacement characteristics in direct current (DC) and alternating current (AC) modes are theoretically investigated. Compared with conventional high-voltage power sources, the multilayered TENG delivers a maximum power of only 10.17 mW, providing a low-power alternative for piezoelectric actuator with self-powered capability and operational safety. Meanwhile, the hysteresis of the stack actuator that is critical in precise positioning control is reduced by 58.1%. A precise positioning system is demonstrated by utilizing the TENG-powered stack actuator as an object stage for microscope focusing applications. The feasibility of vibration control with a 76.7% reduction in vibration amplitude is also verified via two TENG-powered MFC actuators. A rectifying control circuit comprising the rectifier and gas discharging tube is established to implement AC-DC conversion and discharging control, achieving a larger displacement of the unimorph actuator. The TENG-powered piezoelectric micropump demonstrates its potential application in liquid transport through straightforward operation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Advances in Marine Self-Powered Vibration Sensor Based on Triboelectric Nanogenerator
    Zou, Yongjiu
    Sun, Minzheng
    Xu, Weipeng
    Zhao, Xin
    Du, Taili
    Sun, Peiting
    Xu, Minyi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [32] Self-powered silicon PIN neutron detector based on triboelectric nanogenerator
    Zhu, Zhiyuan
    Li, Bao
    Zhao, En
    Yu, Min
    NANO ENERGY, 2022, 102
  • [33] A Self-Powered Lantern Based on a Triboelectric-Photovoltaic Hybrid Nanogenerator
    Cao, Ran
    Wang, Jiaona
    Xing, Yi
    Song, Weixing
    Li, Nianwu
    Zhao, Shuyu
    Zhang, Chi
    Li, Congju
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (04):
  • [34] A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE
    Kequan Xia
    Zhiyuan Zhu
    Hongze Zhang
    Zhiwei Xu
    Applied Physics A, 2018, 124
  • [35] A triboelectric nanogenerator based on white sugar for self-powered humidity sensor
    Liu, Hongye
    Wang, Hao
    Fan, Yanping
    Lyu, Yan
    Liu, Zenghua
    SOLID-STATE ELECTRONICS, 2020, 174
  • [36] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Li, Yingzhe
    Liu, Chaoran
    Hu, Sanshan
    Sun, Peng
    Fang, Lingxing
    Lazarouk, Serguei
    Labunov, Vladimir
    Yang, Weihuang
    Li, Dujuan
    Fan, Kai
    Wang, Gaofeng
    Dong, Linxi
    Che, Lufeng
    ACOUSTICS AUSTRALIA, 2022, 50 (03) : 383 - 391
  • [37] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Yingzhe Li
    Chaoran Liu
    Sanshan Hu
    Peng Sun
    Lingxing Fang
    Serguei Lazarouk
    Vladimir Labunov
    Weihuang Yang
    Dujuan Li
    Kai Fan
    Gaofeng Wang
    Linxi Dong
    Lufeng Che
    Acoustics Australia, 2022, 50 : 383 - 391
  • [38] A Self-Powered Vector Angle/Displacement Sensor Based on Triboelectric Nanogenerator
    Li, Chengyu
    Wang, Ziming
    Shu, Sheng
    Tang, Wei
    MICROMACHINES, 2021, 12 (03) : 1 - 10
  • [39] Self-Powered Phase Transition Driven by Triboelectric Nanogenerator
    Ren, Lele
    Xiao, Junfeng
    Wang, Wei
    Yu, Aifang
    Zhang, Yufei
    Zhai, Junyi
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (05) : 2845 - 2852
  • [40] Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator
    Zhou, Jian
    Tao, Ye
    Liu, Weiyu
    Sun, Haizhen
    Wu, Wenlong
    Song, Chunlei
    Xue, Rui
    Jiang, Tianyi
    Jiang, Hongyuan
    Ren, Yukun
    NANO ENERGY, 2021, 89