On Burnside Theory for groupoids

被引:0
|
作者
El Kaouttt, Laiachi [1 ,2 ]
Spinosa, Leonardo [3 ]
机构
[1] Univ Granada, Dept Algebra, Fuente Nueva s-n, E-18071 Granada, Spain
[2] Univ Granada, IMAG, Fac Ciencias, Fuente Nueva s-n, E-18071 Granada, Spain
[3] Univ Ferrara, Dept Math & Comp Sci, Via Machiavelli 30, I-44121 Ferrara, Italy
关键词
The monoidal category of groupoid-bisets; conjugation between sub-groupoids; Burnside Theorem; Burnside ring of finite groupoids; table of marks; the ghost map and the idempotents; Laplaza categories; CATEGORIES; RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore the concept of conjugation between subgroupoids, providing several characterizations of the conjugacy relation (Theorem A in 1.2). We show that two finite groupoid-sets, over a locally strongly finite groupoid, are isomorphic, if and only if, they have the same number of fixed points with respect to any subgroupoid with a single object (Theorem B in 1.2). Lastly, we examine the ghost map of a finite groupoid and the idempotents elements of its Burnside algebra. The exposition includes an Appendix where we gather the main general technical notions that are needed along the paper.
引用
收藏
页码:41 / 87
页数:47
相关论文
共 50 条
  • [21] Equivariant E-theory and groupoids
    Popescu, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (03): : 223 - 228
  • [22] Axiomatic theory of Burnside rings. (I)
    Yoshida, Tomoyuki
    Oda, Fumihito
    Takegahara, Yugen
    JOURNAL OF ALGEBRA, 2018, 505 : 339 - 382
  • [23] Kasparov equivariant theory and groupoids - I
    Le Gall, PY
    K-THEORY, 1999, 16 (04): : 361 - 390
  • [24] Filter theory of extended implicative groupoids
    Sameri, E.
    Borzooei, R. A.
    Bagha, D. Ebrahimi
    SOFT COMPUTING, 2021, 25 (23) : 14499 - 14508
  • [25] The equational theory of paramedial cancellation groupoids
    Jezek, J
    Kepka, T
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2000, 50 (01) : 25 - 34
  • [26] Burnside’s engagement with the “modern theory of statistics”
    John Aldrich
    Archive for History of Exact Sciences, 2009, 63 : 51 - 79
  • [27] DISTRIBUTIVE GROUPOIDS IN KNOT-THEORY
    MATVEEV, SV
    MATHEMATICS OF THE USSR-SBORNIK, 1982, 119 (1-2): : 73 - 83
  • [28] Small cancellation theory over Burnside groups
    Coulon, Remi
    Gruber, Dominik
    ADVANCES IN MATHEMATICS, 2019, 353 : 722 - 775
  • [29] Parametrized Homotopy Theory and Fundamental Groupoids
    Costenoble, Steven R.
    Waner, Stefan
    EQUIVARIANT ORDINARY HOMOLOGY AND COHOMOLOGY, 2016, 2178 : 155 - 202
  • [30] The equational theory of paramedial cancellation groupoids
    Jaroslav Ježek
    Tomáš Kepka
    Czechoslovak Mathematical Journal, 2000, 50 : 25 - 34