Entropy regularization methods for parameter space exploration

被引:5
|
作者
Han, Shuai [1 ,2 ,3 ]
Zhou, Wenbo [1 ,4 ,5 ]
Lu, Shuai [1 ,2 ,6 ]
Zhu, Sheng [1 ,6 ]
Gong, Xiaoyu [1 ,2 ]
机构
[1] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[3] Univ Utrecht, Dept Informat & Comp Sci, NL-3584 CC Utrecht, Netherlands
[4] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Peoples R China
[5] Northeast Normal Univ, Minist Educ, Key Lab Appl Stat, Changchun 130024, Peoples R China
[6] Jilin Univ, Coll Software, Changchun 130012, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Reinforcement learning; Entropy regularization; Exploration; Parameter spaces; Deterministic policy gradients;
D O I
10.1016/j.ins.2022.11.099
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Entropy regularization is an important approach to improve exploration and enhance pol-icy stability for reinforcement learning. However, in previous study, entropy regularization is applied only to action spaces. In this paper, we apply entropy regularization to parameter spaces. We use learnable noisy layers to parameterize the policy network to obtain a learn-able entropy. Also, we derive the expression for the entropy of the noisy parameter and an upper bound on the joint entropy. Based on these, we propose a model-free method named deep pseudo deterministic policy gradients based on entropy regularization (DPGER). This method maximizes the entropy of each noisy parameter in the early learning process to promote exploration, and minimizes the joint entropy of the noisy parameters in the later learning process to facilitate the formation of stable policies. We test our method on four Mujoco environments with five random seeds. The results show that our method brings better performance compared to previous methods. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:476 / 489
页数:14
相关论文
共 50 条
  • [21] Comparisons of parameter choice methods for regularization with discrete noisy data
    Lukas, MA
    INVERSE PROBLEMS, 1998, 14 (01) : 161 - 184
  • [22] Holographic vacuum energy regularization and corrected entropy of de Sitter space
    Jalalzadeh, S.
    Moradpour, H.
    Tebyanian, H.
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (16)
  • [23] A Model of the Cellular Iron Homeostasis Network Using Semi-Formal Methods for Parameter Space Exploration
    Mobilia, Nicolas
    Donze, Alexandre
    Moulis, Jean Marc
    Fanchon, Eric
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (92): : 42 - 57
  • [24] Parameter exploration of the raster space activity bundle simulation
    Yang, Yong
    Atkinson, Peter M.
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2008, 10 (03) : 263 - 289
  • [25] Parameter space exploration of the minimal SU(5) unification
    Dorsner, Ilja
    Dzaferovic-Masic, Emina
    Saad, Shaikh
    PHYSICAL REVIEW D, 2021, 104 (01)
  • [26] Parameter exploration of the raster space activity bundle simulation
    Yong Yang
    Peter M. Atkinson
    Journal of Geographical Systems, 2008, 10 : 263 - 289
  • [27] Parameter space exploration of agent-based models
    Calvez, B
    Hutzler, G
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 4, PROCEEDINGS, 2005, 3684 : 633 - 639
  • [28] Author verification by linguistic profiling: An exploration of the parameter space
    Van Halteren, Hans
    ACM Transactions on Speech and Language Processing, 2007, 4 (01):
  • [29] Fast Global Convergence of Natural Policy Gradient Methods with Entropy Regularization
    Cen, Shicong
    Cheng, Chen
    Chen, Yuxin
    Wei, Yuting
    Chi, Yuejie
    OPERATIONS RESEARCH, 2021, 70 (04) : 2563 - 2578
  • [30] A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1415 - 1438