Prediction of cognitive impairment using higher order item response theory and machine learning models

被引:2
|
作者
Yao, Lihua [1 ]
Shono, Yusuke [2 ]
Nowinski, Cindy [1 ]
Dworak, Elizabeth M. [1 ]
Kaat, Aaron [1 ]
Chen, Shirley [3 ]
Lovett, Rebecca [1 ]
Ho, Emily [1 ]
Curtis, Laura [1 ]
Wolf, Michael [1 ]
Gershon, Richard [1 ]
Benavente, Julia Yoshino [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Med Social Sci, Chicago, IL 60611 USA
[2] Claremont Grad Univ, Sch Community & Global Hlth, Claremont, CA USA
[3] Aurora St Lukes Med Ctr, Transit Year Residency, Milwaukee, WI USA
来源
FRONTIERS IN PSYCHIATRY | 2024年 / 14卷
基金
美国国家卫生研究院;
关键词
MyCog; NIH Toolbox; machine learning; deep learning; IRT; higher order item response theory; impairment; cognitive impairment;
D O I
10.3389/fpsyt.2023.1297952
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Timely detection of cognitive impairment (CI) is critical for the wellbeing of elderly individuals. The MyCog assessment employs two validated iPad-based measures from the NIH Toolbox (R) for Assessment of Neurological and Behavioral Function (NIH Toolbox). These measures assess pivotal cognitive domains: Picture Sequence Memory (PSM) for episodic memory and Dimensional Change Card Sort Test (DCCS) for cognitive flexibility. The study involved 86 patients and explored diverse machine learning models to enhance CI prediction. This encompassed traditional classifiers and neural-network-based methods. After 100 bootstrap replications, the Random Forest model stood out, delivering compelling results: precision at 0.803, recall at 0.758, accuracy at 0.902, F1 at 0.742, and specificity at 0.951. Notably, the model incorporated a composite score derived from a 2-parameter higher order item response theory (HOIRT) model that integrated DCCS and PSM assessments. The study's pivotal finding underscores the inadequacy of relying solely on a fixed composite score cutoff point. Instead, it advocates for machine learning models that incorporate HOIRT-derived scores and encompass relevant features such as age. Such an approach promises more effective predictive models for CI, thus advancing early detection and intervention among the elderly.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Higher-order Thinking Test of Science for College Students Using Multidimensional Item Response Theory Analysis
    Maryani, Ika
    Prasetyo, Zuhdan Kun
    Wilujeng, Insih
    Purwanti, Siwi
    PEGEM EGITIM VE OGRETIM DERGISI, 2022, 12 (01): : 292 - 300
  • [42] Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning
    Lee, Minwoo
    Yeo, Na-Young
    Ahn, Hyo-Jeong
    Lim, Jae-Sung
    Kim, Yerim
    Lee, Sang-Hwa
    Oh, Mi Sun
    Lee, Byung-Chul
    Yu, Kyung-Ho
    Kim, Chulho
    ALZHEIMERS RESEARCH & THERAPY, 2023, 15 (01)
  • [43] Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning
    Minwoo Lee
    Na-Young Yeo
    Hyo-Jeong Ahn
    Jae-Sung Lim
    Yerim Kim
    Sang-Hwa Lee
    Mi Sun Oh
    Byung-Chul Lee
    Kyung-Ho Yu
    Chulho Kim
    Alzheimer's Research & Therapy, 15
  • [44] Mild cognitive impairment, dementia, and cognitive dysfunction screening using machine learning
    Yim, Daehyuk
    Yeo, Tae Young
    Park, Moon Ho
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2020, 48 (07)
  • [45] Cognitive functioning impairment prediction in patients with bipolar disorder: a pilot study using machine learning techniques
    Przybylski, L.
    Noll, G.
    Librenza-Garcia, D.
    Pinto, J. V.
    Kauer Sant'Anna, M.
    Ribeiro Rosa, A.
    Flavio, K.
    Cavalcante Passos, I.
    BIPOLAR DISORDERS, 2018, 20 : 107 - 107
  • [46] Integration of Prediction Scores From Various Automated Essay Scoring Models Using Item Response Theory
    Uto, Masaki
    Aomi, Itsuki
    Tsutsumi, Emiko
    Ueno, Maomi
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2023, 16 (06): : 983 - 1000
  • [47] ASSESSING ITEM FIT FOR UNIDIMENSIONAL ITEM RESPONSE THEORY MODELS USING RESIDUALS FROM ESTIMATED ITEM RESPONSE FUNCTIONS
    Haberman, Shelby J.
    Sinharay, Sandip
    Chon, Kyong Hee
    PSYCHOMETRIKA, 2013, 78 (03) : 417 - 440
  • [48] Machine Learning for Detection of Cognitive Impairment
    Diaz, Valeria
    Rodriguez, Guillermo
    ACTA POLYTECHNICA HUNGARICA, 2022, 19 (05) : 195 - 213
  • [49] Assessing Item Fit for Unidimensional Item Response Theory Models Using Residuals from Estimated Item Response Functions
    Haberman S.J.
    Sinharay S.
    Chon K.H.
    Psychometrika, 2013, 78 (3) : 417 - 440
  • [50] The Item Response Theory Mixture Models
    Brizuela-Rodriguez, Armel
    ACTUALIDADES EN PSICOLOGIA, 2015, 29 (119): : 79 - 90