Individual-level functional connectivity predicts cognitive control efficiency

被引:2
|
作者
Deck, Benjamin L. [1 ]
Kelkar, Apoorva [1 ]
Erickson, Brian [1 ]
Erani, Fareshte [1 ]
Mcconathey, Eric [2 ]
Sacchetti, Daniela [2 ]
Faseyitan, Olufunsho [2 ]
Hamilton, Roy [2 ]
Medaglia, John D. [1 ,2 ]
机构
[1] Drexel Univ, Dept Psychol & Brain Sci, 3201 Chestnut St, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Dept Neurol, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Cognitive control; Navon; Stroop; Prediction; EXECUTIVE FUNCTIONS; DORSAL ATTENTION; BRAIN NETWORKS; DEFAULT MODE; FRONTOPARIETAL NETWORK; CINGULATE CORTEX; MOTION ARTIFACT; CORE SYSTEM; TASK; TIME;
D O I
10.1016/j.neuroimage.2023.120386
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cognitive control (CC) is essential for problem-solving in everyday life, and CC-related deficits occur alongside costly and debilitating disorders. The tri-partite model suggests that CC comprises multiple behaviors, including switching, inhibiting, and updating. Activity within the fronto-parietal control network B (FPCN-B), the dorsal attention network (DAN), the cingulo-opercular network (CON), and the lateral default-mode network (LDMN) is related to switching and inhibiting behaviors. However, our understanding of how these brain regions interact to bring about cognitive switching and inhibiting in individuals is unclear. In the current study, subjects performed two in-scanner tasks that required switching and inhibiting. We used support vector regression (SVR) models containing individually-estimated functional connectivity between the FPCN-B, DAN, CON and L-DMN to predict switching and inhibiting behaviors. We observed that: inter-network connectivity can predict inhibiting and switching behaviors in individuals, and the L-DMN plays a role in switching and inhibiting behaviors. Therefore, individually estimated inter-network connections are markers of CC behaviors, and CC behaviors may arise due to interactions between a set of networks.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Is habitat selection in the wild shaped by individual-level cognitive biases in orientation strategy?
    Beardsworth, Christine E.
    Whiteside, Mark A.
    Laker, Philippa R.
    Nathan, Ran
    Orchan, Yotam
    Toledo, Sivan
    van Horik, Jayden O.
    Madden, Joah R.
    ECOLOGY LETTERS, 2021, 24 (04) : 751 - 760
  • [22] Thalamic Functional Connectivity Predicts Seizure Laterality in Individual TLE Patients
    Barron, Daniel S.
    Fox, Peter T.
    Pardoe, Heath
    Lancaster, Jack L.
    Price, Larry R.
    Blackmon, Karen
    Berry, Kristen
    Cavazos, Jose E.
    Kuzniecky, Ruben
    Devinsky, Orrin
    Thesen, Thomas
    ANNALS OF NEUROLOGY, 2014, 76 : S28 - S28
  • [23] Functional Connectivity Predicts Individual Differences in Impulsivity and Reward Sensitivity in Adolescents
    Abram, Samantha
    Wisner, Krista
    Grazioplene, Rachael
    DeYoung, Colin
    MacDonald, Angus
    BIOLOGICAL PSYCHIATRY, 2014, 75 (09) : 363S - 364S
  • [24] The effect of individual-level adaptive stimulus selection on the group-level parameters for cognitive models
    Fujita K.
    Katahira K.
    Okada K.
    Behaviormetrika, 2023, 50 (2) : 699 - 717
  • [25] Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual-Level Survey Data
    Clements, Michael P.
    JOURNAL OF MONEY CREDIT AND BANKING, 2022, 54 (2-3) : 537 - 568
  • [26] Individual-Level and Couple-Level Discordant Chronic Conditions: Longitudinal Links to Functional Disability
    Polenick, Courtney A.
    Birditt, Kira S.
    Turkelson, Angela
    Kales, Helen C.
    ANNALS OF BEHAVIORAL MEDICINE, 2020, 54 (07) : 455 - 469
  • [27] Global Connectivity of Prefrontal Cortex Predicts Cognitive Control and Intelligence
    Cole, Michael W.
    Yarkoni, Tal
    Repovs, Grega
    Anticevic, Alan
    Braver, Todd S.
    JOURNAL OF NEUROSCIENCE, 2012, 32 (26): : 8988 - 8999
  • [28] Individual-level functional connectomes predict the motor symptoms of Parkinson's disease
    Shi, Zhongyan
    Jiang, Bo
    Liu, Tiantian
    Wang, Li
    Pei, Guangying
    Suo, Dingjie
    Zhang, Jian
    Funahashi, Shintaro
    Wu, Jinglong
    Yan, Tianyi
    CEREBRAL CORTEX, 2023, 33 (10) : 6282 - 6290
  • [29] Use of an Individual-Level Approach to Identify Cortical Connectivity Biomarkers in Obsessive-Compulsive Disorder
    Brennan, Brian P.
    Wang, Danhong
    Li, Meiling
    Perriello, Chris
    Ren, Jianxun
    Elias, Jason A.
    Van Kirk, Nathaniel P.
    Krompinger, Jason W.
    Pope, Harrison G.
    Haber, Suzanne N.
    Rauch, Scott L.
    Baker, Justin T.
    Liu, Hesheng
    BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2019, 4 (01) : 27 - 38
  • [30] Developing an Individual-level Geodemographic Classification
    Burns, Luke
    See, Linda
    Heppenstall, Alison
    Birkin, Mark
    APPLIED SPATIAL ANALYSIS AND POLICY, 2018, 11 (03) : 417 - 437