Rigidity-Aware Detection for 6D Object Pose Estimation

被引:7
|
作者
Hai, Yang [1 ]
Song, Rui [1 ]
Li, Jiaojiao [1 ]
Salzmann, Mathieu [2 ,3 ]
Hu, Yinlin [4 ]
机构
[1] Xidian Univ, State Key Lab ISN, Xian, Peoples R China
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] ClearSpace, Renens, Switzerland
[4] MagicLeap, Plantation, FL USA
关键词
D O I
10.1109/CVPR52729.2023.00862
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most recent 6D object pose estimation methods first use object detection to obtain 2D bounding boxes before actually regressing the pose. However, the general object detection methods they use are ill-suited to handle cluttered scenes, thus producing poor initialization to the subsequent pose network. To address this, we propose a rigidity-aware detection method exploiting the fact that, in 6D pose estimation, the target objects are rigid. This lets us introduce an approach to sampling positive object regions from the entire visible object area during training, instead of naively drawing samples from the bounding box center where the object might be occluded. As such, every visible object part can contribute to the final bounding box prediction, yielding better detection robustness. Key to the success of our approach is a visibility map, which we propose to build using a minimum barrier distance between every pixel in the bounding box and the box boundary. Our results on seven challenging 6D pose estimation datasets evidence that our method outperforms general detection frameworks by a large margin. Furthermore, combined with a pose regression network, we obtain state-of-the-art pose estimation results on the challenging BOP benchmark.
引用
收藏
页码:8927 / 8936
页数:10
相关论文
共 50 条
  • [21] RobotP: A Benchmark Dataset for 6D Object Pose Estimation
    Yuan, Honglin
    Hoogenkamp, Tim
    Veltkamp, Remco C.
    SENSORS, 2021, 21 (04) : 1 - 26
  • [22] 6D Object Pose Estimation Based on the Attention Mechanism
    Zhou, Guanyu
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [23] Focal segmentation for robust 6D object pose estimation
    Yuning Ye
    Hanhoon Park
    Multimedia Tools and Applications, 2024, 83 : 47563 - 47585
  • [24] Open-vocabulary object 6D pose estimation
    Corsetti, Jaime
    Boscaini, Davide
    Oh, Changjae
    Cavallaro, Andrea
    Poiesi, Fabio
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 18071 - 18080
  • [25] Single-Stage 6D Object Pose Estimation
    Hu, Yinlin
    Fua, Pascal
    Wang, Wei
    Salzmann, Mathieu
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2927 - 2936
  • [26] Sparse Keypoint Models for 6D Object Pose Estimation
    Sadran, Emal
    Wurm, Kai M.
    Burschka, Darius
    2013 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2013), 2013, : 307 - 312
  • [27] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151
  • [28] Object Detection and 6D Pose Estimation for Precise Robotic Manipulation in Unstructured Environments
    di Castro, Mario
    Camarero Vera, Jorge
    Ferre, Manuel
    Masi, Alessandro
    INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, ICINCO 2017, 2020, 495 : 392 - 403
  • [29] Global Hypothesis Generation for 6D Object Pose Estimation
    Michel, Frank
    Kirillov, Alexander
    Brachmann, Eric
    Krull, Alexander
    Gumhold, Stefan
    Savchynskyy, Bogdan
    Rother, Carsten
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 115 - 124
  • [30] Anchor-Based 6D Object Pose Estimation
    Liu, Zehao
    Wang, Hao
    Liu, Fuchang
    2021 IEEE 7TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY (ICVR 2021), 2021, : 33 - 40