Biocompatible, breathable and degradable microbial cellulose based triboelectric nanogenerator for wearable transient electronics

被引:31
|
作者
Fatma, Bushara [1 ,2 ]
Andrabi, Syed Muntazir [3 ,8 ,9 ]
Gupta, Shashikant [4 ]
Kumar, Ashok [3 ]
Verma, Vivek [4 ,5 ,6 ]
Pitsalidis, Charalampos [1 ,7 ]
Garg, Ashish [2 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Phys, Abu Dhabi, U Arab Emirates
[2] Indian Inst Technol Kanpur, Dept Sustainable Energy & Engn, Kanpur 208016, UP, India
[3] Indian Inst Technol Kanpur, Dept Biol Sci & Engn, Kanpur 208016, UP, India
[4] Indian Inst Technol Kanpur, Dept Mat Sci & Engn, Kanpur 208016, UP, India
[5] Indian Inst Technol Kanpur, Ctr Environm Sci & Engn, Kanpur 208016, UP, India
[6] Indian Inst Technol Kanpur, Natl Ctr Flexible Elect, Kanpur 208016, UP, India
[7] Khalifa Univ Sci & Technol, Healthcare Engn Innovat Ctr HEIC, Abu Dhabi, U Arab Emirates
[8] Univ Nebraska Med Ctr, Dept Surg Transplant, Omaha, NE 68198 USA
[9] Univ Nebraska Med Ctr, Mary & Dick Holland Regenerat Med Program, Omaha, NE 68198 USA
基金
英国工程与自然科学研究理事会;
关键词
Triboelectric nanogenerator; Bacterial cellulose; Polydopamine; Biocompatible; Antibacterial; Breathable; IN-VITRO BIODEGRADABILITY; BACTERIAL CELLULOSE; SURFACE FUNCTIONALIZATION; NANOCOMPOSITE; NANOCRYSTALS; PERFORMANCE; FABRICATION; NANOFIBRILS; TEXTILES; DELIVERY;
D O I
10.1016/j.nanoen.2023.108628
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advances in the processing of natural biomaterials have brought to the fore new approaches for the development of biofriendly and sustainable triboelectric nanogenerators (TENGs). In particular, bacterial cellulose (BC)-based TENGs have attracted considerable attention even though they still lack the key combination for transient wearable electronics. Herein, we report on a novel and facile method for in situ chemical modification of BC for the fabrication of degradable, breathable and biocompatible triboelectric nanogenerators (TENG). To achieve that, nanocoatings of polydopamine, polypyrrole or SiO2 have been used to decorate BC nanofibrils and thus tune the surface potential of the BC layer. Such a modification enables the repositioning of BC in the triboelectric series, allowing for the fabrication of various BC-based TENG devices. Polydopamine based BC TENG is found to exhibit superior performance (when coupled with a PVDF as negative triboelectric) with a maximum output voltage of -1010 V and a power density of -8.7 W/m2, a 7-fold enhancement in the power density as compared to pristine BC (VOC = 530 V and Pout = 1.1 W/m2). It is worthmentioning that all the nanocoated-BC films are found to be breathable, bio-/hemo-compatible and degradable, fulfilling the main criteria for transient electronics. As a proof of concept, we also demonstrate an on-body biomechanical energy harvester based on a single electrode All-BC TENG with the capability to generate an output voltage of 40 V upon physical motion. This TENG technology provides a unique combination of properties and has the potential to be implemented in wearables electronics and in vivo applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A triboelectric nanogenerator using degradable surface-modified cellulose acetate and ferroelectric gelatin composite nanofibers
    Cao, Viet Anh
    Kim, Minje
    Van, Phuoc Cao
    Jeong, Jong-Ryul
    Kim, Soo Young
    Nah, Junghyo
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (05) : 3142 - 3150
  • [42] Self-powered wearable keyboard with fabric based triboelectric nanogenerator
    Jeon, Seung-Bae
    Park, Sang-Jae
    Kim, Weon-Guk
    Tcho, Il-Woong
    Jin, Ik-Kyeong
    Han, Joon-Kyu
    Kim, Daewon
    Choi, Yang-Kyu
    NANO ENERGY, 2018, 53 : 596 - 603
  • [43] Smart Wearable Sensors Based on Triboelectric Nanogenerator for Personal Healthcare Monitoring
    Li, Ruonan
    Wei, Xuelian
    Xu, Jiahui
    Chen, Junhuan
    Li, Bin
    Wu, Zhiyi
    Wang, Zhong Lin
    MICROMACHINES, 2021, 12 (04)
  • [44] A transparent and degradable bacterial cellulose-based film for triboelectric nanogenerator: Efficient biomechanical energy harvesting and human health monitoring
    Feng, Linan
    Cao, Xia
    Wang, Zhong Lin
    Zhang, Liqun
    NANO ENERGY, 2024, 120
  • [45] Biodegradable and flame-retardant cellulose-based wearable triboelectric nanogenerator for mechanical energy harvesting in firefighting clothing
    Yu, Zhicai
    Zhu, Zhenyu
    Zhang, Yingzi
    Li, Xiaoqian
    Liu, Xin
    Qin, Yi
    Zheng, Zhenrong
    Zhang, Lianyang
    He, Hualing
    CARBOHYDRATE POLYMERS, 2024, 334
  • [46] Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics
    Liu, Liqiang
    Yang, Xiya
    Zhao, Leilei
    Xu, Wenkai
    Wang, Jianwei
    Yang, Qianming
    Tang, Qunwei
    NANO ENERGY, 2020, 73
  • [47] Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics
    Wang, Dongyue
    Zhang, Dongzhi
    Tang, Mingcong
    Zhang, Hao
    Chen, Fengjiao
    Wang, Tian
    Li, Zheng
    Zhao, Peipei
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [48] Vitrimer Elastomer-Based Jigsaw Puzzle-Like Healable Triboelectric Nanogenerator for Self-Powered Wearable Electronics
    Deng, Jianan
    Kuang, Xiao
    Liu, Ruiyuan
    Ding, Wenbo
    Wang, Aurelia C.
    Lai, Ying-Chih
    Dong, Kai
    Wen, Zhen
    Wang, Yaxian
    Wang, Lili
    Qi, H. Jerry
    Zhang, Tong
    Wang, Zhong Lin
    ADVANCED MATERIALS, 2018, 30 (14)
  • [49] Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics
    Wang, Dongyue
    Zhang, Dongzhi
    Tang, Mingcong
    Zhang, Hao
    Chen, Fengjiao
    Wang, Tian
    Li, Zheng
    Zhao, Peipei
    Chemical Engineering Journal, 2022, 446
  • [50] Thermal insulating textile based triboelectric nanogenerator for outdoor wearable sensing and interaction
    Jiao, Haishuang
    Lin, Xiangde
    Xiong, Yao
    Han, Jing
    Liu, Yang
    Yang, Jiahong
    Wu, Shishuo
    Jiang, Tao
    Wang, Zhong Lin
    Sun, Qijun
    NANO ENERGY, 2024, 120