CaO-MgO-Al2O3-SiO2 (CMAS) corrosion behaviour of LaMgAl11O19/GdPO4 thermal barrier coating materials

被引:3
|
作者
Song, Chenxi [1 ]
Qi, Xiang [1 ]
Huang, Ling [1 ]
Sun, Junbin [1 ,2 ,3 ,4 ]
Li, Lizhen [1 ]
Li, Chenguang [1 ]
Lu, Weihong [1 ,2 ,3 ]
机构
[1] Hengyang Normal Univ, Coll Chem & Mat Sci, Hengyang 421008, Peoples R China
[2] Hengyang Normal Univ, Hunan Prov Key Lab Funct Met Organ Cpds, Hengyang 421008, Peoples R China
[3] Hengyang Normal Univ, Coll Hunan Prov, Key Lab Organomet New Mat, Hengyang 421008, Peoples R China
[4] Hengyang Normal Univ, Hunan Engn Res Ctr Monitoring & Treatment Heavy Me, Hengyang 421008, Peoples R China
基金
中国国家自然科学基金;
关键词
CMAS corrosion; GdPO4; MAGNESIUM-ALUMINA-SILICATE; CONDUCTIVITY; CERAMICS; TEMPERATURE; RESISTANCE; LA; GD; SM; ND;
D O I
10.1016/j.ceramint.2023.05.193
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
CaO-MgO-Al2O3-SiO2 (CMAS) corrosion poses serious hidden dangers for the application of thermal barrier coatings (TBCs). In this study, LaMgAl11O19 (LMA) and GdPO4 were mixed at molar ratios of 2:1, 1:1 and 1:2 to prepare LMA/GdPO4 materials, and the CMAS corrosion behaviours of these materials were investigated at 1300 & DEG;C-1500 & DEG;C for 20 h and 40 h. It was demonstrated that temperature was the main factor influencing the corrosion behaviours and products. The materials were damaged at 1300 & DEG;C by the crystallization of CMAS melts to form CaAl2Si2O8. In contrast, the materials were corroded by CMAS melts via the reaction between CMAS and GdPO4 at 1500 & DEG;C. These results indicate that the addition of GdPO4 to LMA can improve the resistance of the LMA material to CMAS corrosion.
引用
收藏
页码:26578 / 26588
页数:11
相关论文
共 50 条
  • [31] Structure, thermal stability and spinnability of the CaO-MgO-Al2O3-SiO2 glasses with SiO2 replaced by Al2O3
    Xiaokun Tian
    Wenxu Wu
    Xin Liu
    Jingang Zhao
    Junzhu Chen
    Ya Qu
    Yanchao Xu
    Xunmei Liang
    Yunlong Yue
    Junfeng Kang
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2023, 600
  • [32] The effect of TiO2 additions on CaO-MgO-Al2O3-SiO2 (CMAS) crystallization behavior from the melt
    Webster, Rebekah I.
    Opila, Elizabeth J.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (06) : 3354 - 3367
  • [33] INFLUENCE OF SULFUR ON FUSIBILITY OF CAO-MGO-AL2O3-SIO2 SLAGS
    MURATOV, AM
    RUSSIAN METALLURGY, 1971, (06): : 34 - 37
  • [34] SURFACE TENSIONS OF SOME CAO-MGO-AL2O3-SIO2 SLAGS
    ASKARI, M
    CAMERON, AM
    CANADIAN METALLURGICAL QUARTERLY, 1991, 30 (04) : 207 - 212
  • [35] MAGNESIAN ACTIVIZATION OF GLASSES OF CAO-MGO-AL2O3-SIO2 SYSTEM
    MATAITEN.LS
    KAMINSKA.AY
    MATAITIS, AI
    ZHURNAL NEORGANICHESKOI KHIMII, 1974, 19 (05): : 1409 - 1410
  • [36] Modelling Viscosities of CaO-MgO-Al2O3-SiO2 Molten Slags
    Zhang, Guo-Hua
    Chou, Kuo-Chih
    Mills, Ken
    ISIJ INTERNATIONAL, 2012, 52 (03) : 355 - 362
  • [37] Crystallisation of some glasses in CaO-MgO-Al2O3-SiO2 system
    Duca, V
    Duca, M
    Benea, M
    EURO CERAMICS VII, PT 1-3, 2002, 206-2 : 2081 - 2083
  • [38] Dissolution Kinetics of Synthetic FeCr2O4 in CaO-MgO-Al2O3-SiO2 Slag
    Wei, Kangji
    Wang, Lijun
    Liu, Shiyuan
    He, Xiaobo
    Xiao, Yiyu
    Chou, Kuochih
    ISIJ INTERNATIONAL, 2022, 62 (04) : 617 - 625
  • [39] Thermal shock behavior of LaMgAl11O19/Yb2Si2O7/Si thermal/environmental barrier coatings with LaMgAl11O19-LiAlSiO4 transition layer
    Lue, Kaiyue
    Dong, Shujuan
    Huang, Yan
    Mao, Chuanyong
    Jiang, Jianing
    Deng, Longhui
    Cao, Xueqiang
    SURFACE & COATINGS TECHNOLOGY, 2022, 443
  • [40] Tailored geochemical additives to inhibit CaO-MgO-Al2O3-SiO2 (CMAS) melt formation in gas turbine engines
    Elms, Jacob
    Pawley, Alison
    Bojdo, Nicholas
    Covey-Crump, Stephen
    Jones, Merren
    Clarkson, Rory
    MATERIALIA, 2024, 38