A graph attention network utilizing multi-granular information for emotion-cause pair extraction

被引:6
|
作者
Chen, Siyuan [1 ]
Mao, Kezhi [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Multi-granularity; Graph attention network; Mutual indication; Emotion-cause pair extraction; MODEL;
D O I
10.1016/j.neucom.2023.126252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion-cause pair extraction (ECPE) aims to extract emotion and cause clauses underlying a text and pair them. Most of the recent approaches to this problem adopt deep neural networks to model the inter-clause dependency, without making full use of information at word level and document level. In this paper, we propose a model that utilizes multi-granular information, including word-level, clause-level, and document-level information, to facilitate emotion-cause pair extraction. Our model consists of two fully-connected clause graphs, including emotion graph and cause graph, and graph attention is applied to learn emotion-specific and cause-specific representations which are then used to generate document-level representations. To exploit the mutual indication between emotion and cause, a cross-graph co-attention mechanism is proposed. Moreover, external knowledge of emotional and causal cues is incorporated to provide word-level indicative information for emotion-cause pair extraction. The pro-posed model is tested on both Chinese [1] and English [2] datasets, and the results show that our model achieves the state-of-the-art performance on both datasets. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Learning Emotion-Aware Contextual Representations for Emotion-Cause Pair Extraction
    Qiu, Baopu
    Shang, Lin
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT I, 2022, 13551 : 577 - 590
  • [32] Emotion-cause pair extraction via knowledge-driven multi-classification and graph-based position embedding
    Linlin Zong
    Jinglin Zhang
    Jiahui Zhou
    Xianchao Zhang
    Bo Xu
    Applied Intelligence, 2024, 54 : 2703 - 2715
  • [33] Emotion-cause pair extraction via knowledge-driven multi-classification and graph-based position embedding
    Zong, Linlin
    Zhang, Jinglin
    Zhou, Jiahui
    Zhang, Xianchao
    Xu, Bo
    APPLIED INTELLIGENCE, 2024, 54 (03) : 2703 - 2715
  • [34] Knowledge-Enhanced Hierarchical Transformers for Emotion-Cause Pair Extraction
    Wang, Yuwei
    Li, Yuling
    Yu, Kui
    Hu, Yimin
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT IV, 2023, 13938 : 112 - 123
  • [35] Emotion-cause pair extraction based on machine reading comprehension model
    Chang, Ting Wei
    Fan, Yao-Chung
    Chen, Arbee L. P.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (28) : 40653 - 40673
  • [36] Emotion-cause pair extraction based on machine reading comprehension model
    Chang, Ting Wei
    Fan, Yao-Chung
    Chen, Arbee L.P.
    Multimedia Tools and Applications, 2022, 81 (28): : 40653 - 40673
  • [37] Improving Representation With Hierarchical Contrastive Learning for Emotion-Cause Pair Extraction
    Hu, Guimin
    Zhao, Yi
    Lu, Guangming
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (04) : 1997 - 2011
  • [38] Emotion-cause pair extraction based on machine reading comprehension model
    Ting Wei Chang
    Yao-Chung Fan
    Arbee L.P. Chen
    Multimedia Tools and Applications, 2022, 81 : 40653 - 40673
  • [39] A Consistent Dual-MRC Framework for Emotion-cause Pair Extraction
    Cheng, Zifeng
    Jiang, Zhiwei
    Yin, Yafeng
    Wang, Cong
    Ge, Shiping
    Gu, Qing
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2023, 41 (04)
  • [40] Clause Fusion-Based Emotion Embedding Model for Emotion-Cause Pair Extraction
    Li, Zhiwei
    Rao, Guozheng
    Zhang, Li
    Wang, Xin
    Cong, Qing
    Feng, Zhiyong
    WEB AND BIG DATA, PT II, APWEB-WAIM 2022, 2023, 13422 : 38 - 52