Euclidean dynamical triangulations revisited

被引:6
|
作者
Asaduzzaman, Muhammad [1 ]
Catterall, Simon [2 ]
机构
[1] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[2] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
关键词
MODEL;
D O I
10.1103/PhysRevD.107.074505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We conduct numerical simulations of a model of four-dimensional quantum gravity in which the path integral over continuum Euclidean metrics is approximated by a sum over combinatorial triangulations. At fixed volume, the model contains a discrete Einstein-Hilbert term with coupling lc and a local measure term with coupling /3 that weights triangulations according to the number of simplices sharing each vertex. We map out the phase diagram in this two-dimensional parameter space and compute a variety of observables that yield information on the nature of any continuum limit. Our results are consistent with a line of firstorder phase transitions with a latent heat that decreases as lc -> infinity. We find a Hausdorff dimension along the critical line that approaches DH = 4 for large lc and a spectral dimension consistent with Ds =32 at short distances. These results are broadly in agreement with earlier works on Euclidean dynamical triangulation models which utilize degenerate triangulations and/or different measure terms and indicate that such models exhibit a degree of universality.
引用
收藏
页数:8
相关论文
共 50 条