Boundary-Aware Network With Two-Stage Partial Decoders for Salient Object Detection in Remote Sensing Images

被引:10
|
作者
Zheng, Qingping [1 ]
Zheng, Ling [2 ]
Bai, Yunpeng [3 ]
Liu, Hang [1 ]
Deng, Jiankang [4 ]
Li, Ying [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian 710072, Peoples R China
[2] Fuzhou Inst Data Technol, Fuzhou 350200, Peoples R China
[3] Aberystwyth Univ, Dept Comp Sci, Xian 710072, Peoples R China
[4] Imperial Coll London, Dept Comp, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
Optical sensors; Optical imaging; Decoding; Object detection; Remote sensing; Image edge detection; Optical fiber networks; Boundary-aware network (BANet) with two-stage partial decoder; optical remote sensing image (RSI); salient object detection (SOD);
D O I
10.1109/TGRS.2023.3260825
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Salient object detection (SOD) is a binary pixelwise classification to distinguish objects in an image and also has attracted many research interests in the optical remote sensing images (RSIs). The existing state-of-the-art method exploits the full encoder-decoder architecture to predict salient objects in the optical RSIs, suffering from the problem of unsmooth edges and incomplete structures. To address these problems, in this article, we propose a boundary-aware network (BANet) with two-stage partial decoders sharing the same encoders for SOD in RSIs. Specifically, a boundary-aware partial decoder (BAD) is introduced at the first stage to focus on learning clear edges of salient objects. To solve the pixel-imbalance problem between boundary and background, an edge-aware loss is proposed to guide learning the BAD network. The resulting features are then used in turn to enhance high-level features. Afterward, the structure-aware partial decoder (SAD) is further introduced at the second stage to improve the structure integrity of salient objects. To alleviate the problem of incomplete structures, the structural-similarity loss is further proposed to supervise learning the SAD network. In a consequence, our proposed BANet can predict salient objects with clear edges and complete structure, while reducing model parameters due to the discardment of low-level features. Besides, training a deep neural network requires a large amount of images, and the current benchmark datasets for optical RSIs are not large enough. Therefore, we also create a large-scale challenging dataset for SOD in RSIs. Extensive experiments demonstrate that our proposed BANet outperforms previous RSI SOD models on all the existing benchmark datasets and our new presented dataset available at https://github.com/QingpingZheng/RSISOD.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Edge and Skeleton Guidance Network for Salient Object Detection in Optical Remote Sensing Images
    Gong, Aojun
    Nie, Junfei
    Niu, Chen
    Yu, Yuan
    Li, Jun
    Guo, Lianbo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (12) : 7109 - 7120
  • [32] United Domain Cognition Network for Salient Object Detection in Optical Remote Sensing Images
    Sun, Yanguang
    Yang, Jian
    Luo, Lei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [33] Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Gongyang
    Liu, Zhi
    Zeng, Dan
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 526 - 538
  • [34] Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Gongyang
    Liu, Zhi
    Zeng, Dan
    Lin, Weisi
    Ling, Haibin
    IEEE Transactions on Cybernetics, 2023, 53 (01): : 526 - 538
  • [35] Heterogeneous Feature Collaboration Network for Salient Object Detection in Optical Remote Sensing Images
    Liu, Yutong
    Xu, Mingzhu
    Xiao, Tianxiang
    Tang, Haoyu
    Hu, Yupeng
    Nie, Liqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [36] Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images
    Zhang, Qijian
    Cong, Runmin
    Li, Chongyi
    Cheng, Ming-Ming
    Fang, Yuming
    Cao, Xiaochun
    Zhao, Yao
    Kwong, Sam
    IEEE Transactions on Image Processing, 2021, 30 : 1305 - 1317
  • [37] Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images
    Zhang, Qijian
    Cong, Runmin
    Li, Chongyi
    Cheng, Ming-Ming
    Fang, Yuming
    Cao, Xiaochun
    Zhao, Yao
    Kwong, Sam
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1305 - 1317
  • [38] Deep Neural Network Pruning Based Two-Stage Remote Sensing Image Object Detection
    Wang S.-S.
    Wang M.
    Wang G.-Y.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2019, 40 (02): : 174 - 179
  • [39] Two-stage Co-salient Object Detection
    Wang, Zuyi
    Zhang, Lihe
    2017 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2017), 2017, : 287 - 290
  • [40] Salient Object Detection via Two-Stage Graphs
    Liu, Yi
    Han, Jungong
    Zhang, Qiang
    Wang, Long
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (04) : 1023 - 1037