Boundary-Aware Network With Two-Stage Partial Decoders for Salient Object Detection in Remote Sensing Images

被引:10
|
作者
Zheng, Qingping [1 ]
Zheng, Ling [2 ]
Bai, Yunpeng [3 ]
Liu, Hang [1 ]
Deng, Jiankang [4 ]
Li, Ying [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian 710072, Peoples R China
[2] Fuzhou Inst Data Technol, Fuzhou 350200, Peoples R China
[3] Aberystwyth Univ, Dept Comp Sci, Xian 710072, Peoples R China
[4] Imperial Coll London, Dept Comp, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
Optical sensors; Optical imaging; Decoding; Object detection; Remote sensing; Image edge detection; Optical fiber networks; Boundary-aware network (BANet) with two-stage partial decoder; optical remote sensing image (RSI); salient object detection (SOD);
D O I
10.1109/TGRS.2023.3260825
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Salient object detection (SOD) is a binary pixelwise classification to distinguish objects in an image and also has attracted many research interests in the optical remote sensing images (RSIs). The existing state-of-the-art method exploits the full encoder-decoder architecture to predict salient objects in the optical RSIs, suffering from the problem of unsmooth edges and incomplete structures. To address these problems, in this article, we propose a boundary-aware network (BANet) with two-stage partial decoders sharing the same encoders for SOD in RSIs. Specifically, a boundary-aware partial decoder (BAD) is introduced at the first stage to focus on learning clear edges of salient objects. To solve the pixel-imbalance problem between boundary and background, an edge-aware loss is proposed to guide learning the BAD network. The resulting features are then used in turn to enhance high-level features. Afterward, the structure-aware partial decoder (SAD) is further introduced at the second stage to improve the structure integrity of salient objects. To alleviate the problem of incomplete structures, the structural-similarity loss is further proposed to supervise learning the SAD network. In a consequence, our proposed BANet can predict salient objects with clear edges and complete structure, while reducing model parameters due to the discardment of low-level features. Besides, training a deep neural network requires a large amount of images, and the current benchmark datasets for optical RSIs are not large enough. Therefore, we also create a large-scale challenging dataset for SOD in RSIs. Extensive experiments demonstrate that our proposed BANet outperforms previous RSI SOD models on all the existing benchmark datasets and our new presented dataset available at https://github.com/QingpingZheng/RSISOD.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Boundary-Aware Salient Object Detection in Optical Remote-Sensing Images
    Yu, Longxuan
    Zhou, Xiaofei
    Wang, Lingbo
    Zhang, Jiyong
    ELECTRONICS, 2022, 11 (24)
  • [2] Scribble-based boundary-aware network for weakly supervised salient object detection in remote sensing images
    Huang, Zhou
    Xiang, Tian-Zhu
    Chen, Huai-Xin
    Dai, Hang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 191 : 290 - 301
  • [3] Two-stage local attention network for salient object detection in remote sensing images
    Lin, Qihui
    Xia, Lurui
    Li, Sen
    Chen, Wanfeng
    IET IMAGE PROCESSING, 2023, 17 (03) : 849 - 861
  • [4] Attentive Feedback Network for Boundary-Aware Salient Object Detection
    Feng, Mengyang
    Lu, Huchuan
    Ding, Errui
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1623 - 1632
  • [5] BASNet: Boundary-Aware Salient Object Detection
    Qin, Xuebin
    Zhang, Zichen
    Huang, Chenyang
    Gao, Chao
    Dehghan, Masood
    Jagersand, Martin
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7471 - 7481
  • [6] Selectivity or Invariance: Boundary-aware Salient Object Detection
    Su, Jinming
    Li, Jia
    Zhang, Yu
    Xia, Changqun
    Tian, Yonghong
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3798 - 3807
  • [7] BPFINet: Boundary-aware progressive feature integration network for salient object detection
    Chen, Tianyou
    Hu, Xiaoguang
    Xiao, Jin
    Zhang, Guofeng
    NEUROCOMPUTING, 2021, 451 : 152 - 166
  • [8] LFBCNet: Light Field Boundary-aware and Cascaded Interaction Network for Salient Object Detection
    Wang, Mianzhao
    Shi, Fan
    Cheng, Xu
    Zhao, Meng
    Zhang, Yao
    Jia, Chen
    Tian, Weiwei
    Chen, Shengyong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3430 - 3439
  • [9] Boundary-aware High-resolution Network with region enhancement for salient object detection
    Zhang, Xue
    Wang, Zheng
    Hu, Qinghua
    Ren, Jinchang
    Sun, Meijun
    NEUROCOMPUTING, 2020, 418 : 91 - 101
  • [10] TBNet: A texture and boundary-aware network for small weak object detection in remote-sensing imagery
    Li, Zheng
    Wang, Yongcheng
    Xu, Dongdong
    Gao, Yunxiao
    Zhao, Tianqi
    PATTERN RECOGNITION, 2025, 158