Further Properties of an Operator Commuting with an Injective Quasi-Nilpotent Operator

被引:1
|
作者
Aiena, Pietro [1 ]
Burderi, Fabio [1 ]
Triolo, Salvatore [1 ]
机构
[1] Univ Palermo Italia, Viale Sci, I-90128 Palermo, Italy
关键词
Quasi-nilpotent injective operators; Volterra type operators; Weyl spectra; generalized Weyl type theorems;
D O I
10.1007/s00009-023-02570-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In (Aiena et al., Math. Proc. R. Irish Acad. 122A(2):101-116, 2022), it has been shown that a bounded linear operator T is an element of L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\in L(X)$$\end{document}, defined on an infinite-dimensional complex Banach space X, for which there exists an injective quasi-nilpotent operator that commutes with it, has a very special structure of the spectrum. In this paper, we show that we have much more: if a such quasi-nilpotent operator does exist, then some of the spectra of T originating from B-Fredholm theory coalesce. Further, the spectral mapping theorem holds for all the B-Weyl spectra. Finally, the generalized version of Weyl type theorems hold for T assuming that T is of polaroid type. Our results apply to the operators that belong to the commutant of Volterra operators.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] TRIANGULARIZING SEMIGROUPS OF QUASI-NILPOTENT OPERATORS WITH NONNEGATIVE ENTRIES
    CHOI, MD
    NORDGREN, EA
    RADJAVI, H
    ROSENTHAL, P
    ZHONG, Y
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (01) : 15 - 25
  • [32] The Probability That an Operator Is Nilpotent
    Leinster, Tom
    AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (04): : 371 - 375
  • [33] On commuting operator exponentials
    Paliogiannis, FC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (12) : 3777 - 3781
  • [34] Operators which have a closed quasi-nilpotent part
    Aiena, P
    Colasante, ML
    González, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (09) : 2701 - 2710
  • [35] ZEEMAN COMPARISON THEOREM FOR HOMOLOGY OF QUASI-NILPOTENT FIBRATIONS
    HILTON, P
    ROITBERG, J
    QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (108): : 433 - 444
  • [36] The general nilpotent operator system
    Dombia, J.
    Csiszar, O.
    FUZZY SETS AND SYSTEMS, 2015, 261 : 1 - 19
  • [37] A remark on commuting operator exponentials
    Wermuth, EME
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1685 - 1688
  • [38] COMMUTING PERTURBATIONS OF OPERATOR EQUATIONS
    Xu, Xue
    Ding, Jiu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 1691 - 1698
  • [39] OPERATOR RADII OF COMMUTING PRODUCTS
    OKUBO, K
    ANDO, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 56 (APR) : 203 - 210
  • [40] On commuting operator exponentials, II
    Paliogiannis, Fotios C.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (01): : 27 - 31