Experimental investigation on spatial-temporal evolution of tip leakage cavitation in a mixed flow pump with tip clearance

被引:37
|
作者
Han, Yadong [1 ]
Tan, Lei [1 ]
机构
[1] Tsinghua Univ, Dept Energy & Power Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
关键词
Mixed flow pump; Tip leakage cavitation; Tip leakage vortex; Experiment; High-speed visualization; LARGE-EDDY SIMULATION; NUMERICAL-ANALYSIS; VORTEX; TURBINE; TURBULENCE; MECHANISMS;
D O I
10.1016/j.ijmultiphaseflow.2023.104445
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Tip leakage cavitation remains an unsolved problem that threatens the safe operation of hydraulic machines and plagues researchers worldwide. The objective of this work is to investigate the classification and spatial-temporal evolution of tip leakage cavitation, and even to provide additional insights into the flow physics. Experiments are conducted in a mixed flow pump installed on a closed-loop test rig. High-speed visualizations are performed to capture the flow patterns of tip leakage cavitation at rated flow rate. It is demonstrated that tip leakage vortex cavitation can be categorized as primary tip leakage vortex cavitation (PTLVC) and secondary tip leakage vortex cavitation (STLVC). A new tip leakage cavitation structure, named as the double-hump PTLVC, is firstly observed in the mixed flow pump under severe cavitation conditions. The spatial-temporal evolution of the double-hump PTLVC is classified into four stages: incepting stage, growing stage, merging stage and propagating stage. The averaged propagating velocity of the front hump of PTLVC increases with decreasing net positive suction head (NPSH), and reaches the maximum of 0.38 Utip in the present experiment. Three empirical functions are proposed to describe the relationship between projected area, the maximum axial thickness, circumferential collapse position and NPSH, respectively. It is found that for every 0.1 m drop in NPSH, the projected area increases by about 2.1%, the maximum axial thickness increases by about 2.7%, and the circumferential length of the PTLVC increases by about 3.5%, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A study on tip leakage vortex dynamics and cavitation in axial-flow pump
    Shi, Lei
    Zhang, Desheng
    Jin, Yongxin
    Shi, Weidong
    van Esch, B. P. M.
    FLUID DYNAMICS RESEARCH, 2017, 49 (03)
  • [32] Experimental and numerical investigation of tip leakage vortex cavitation in an axial flow pump under design and off-design conditions
    Shen, Xi
    Zhang, Desheng
    Xu, Bin
    Ye, Changliang
    Shi, Weidong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2021, 235 (01) : 70 - 80
  • [33] Numerical investigation of tip leakage vortex cavitation
    Maghooli, Ali
    Raisee, Mehrdad
    Nourbakhsh, Seyed Ahmad
    29TH IAHR SYMPOSIUM ON HYDRAULIC MACHINERY AND SYSTEMS, 2019, 240
  • [34] Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump
    SHI Lei
    ZHANG DeSheng
    ZHAO RuiJie
    SHI WeiDong
    JIN YongXin
    Science China(Technological Sciences), 2017, 60 (10) : 1480 - 1493
  • [35] Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump
    Shi Lei
    Zhang DeSheng
    Zhao RuiJie
    Shi WeiDong
    Jin YongXin
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2017, 60 (10) : 1480 - 1493
  • [36] Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump
    SHI Lei
    ZHANG DeSheng
    ZHAO RuiJie
    SHI WeiDong
    JIN YongXin
    Science China(Technological Sciences), 2017, (10) : 1480 - 1493
  • [37] Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump
    Lei Shi
    DeSheng Zhang
    RuiJie Zhao
    WeiDong Shi
    YongXin Jin
    Science China Technological Sciences, 2017, 60 : 1480 - 1493
  • [38] Unsteady tip leakage vortex cavitation originating from the tip clearance of an oscillating hydrofoil
    Murayama, Masahiro
    Yoshida, Yoshiki
    Tsujimoto, Yoshinobu
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2006, 128 (03): : 421 - 429
  • [39] Numerical simulation of tip clearance leakage vortex flow characteristic in axial flow pump
    Shi, W. D.
    Li, T. T.
    Zhang, D. S.
    Tian, F.
    Zhang, G. J.
    26TH IAHR SYMPOSIUM ON HYDRAULIC MACHINERY AND SYSTEMS, PTS 1-7, 2013, 15
  • [40] Characteristics of tip leakage flow inside the tip clearance of an axial compressor
    Liao, Zhihong
    Xue, Zhiliang
    Shen, Jianqi
    Zhou, Yonggang
    Jin, Qiwen
    Wu, Xuecheng
    PHYSICS OF FLUIDS, 2025, 37 (03)