SOBOLEV EMBEDDINGS INTO ORLICZ SPACES AND ISOCAPACITARY INEQUALITIES

被引:0
|
作者
Cianchi, Andrea [1 ]
Maz'ya, Vladimir G. [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67 A, I-50134 Florence, Italy
[2] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
关键词
Sobolev inequalities; irregular domains; capacity; Orlicz spaces; isoperimetric inequalities; compact embeddings; COMPLETE RIEMANNIAN MANIFOLD; ISOPERIMETRIC PROFILE; LAPLACIAN; THEOREMS; SETS;
D O I
10.1090/tran/8689
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sobolev embeddings into Orlicz spaces on domains in the Eu-clidean space or, more generally, on Riemannian manifolds are considered. Highly irregular domains where the optimal degree of integrability of a func-tion may be lower than the one of its gradient are focused. A necessary and sufficient condition for the validity of the relevant embeddings is established in terms of the isocapacitary function of the domain. Compact embeddings are discussed as well. Sufficient conditions involving the isoperimetric function of the domain are derived as a by-product.
引用
收藏
页码:91 / 121
页数:31
相关论文
共 50 条
  • [31] Orlicz-Sobolev embeddings, extensions and Orlicz-Poincareinequalities
    Heikkinen, Toni
    Karak, Nijjwal
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (02)
  • [32] Symmetrization inequalities and Sobolev embeddings
    Martin, J
    Milman, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2335 - 2347
  • [33] On fractional Orlicz–Sobolev spaces
    Angela Alberico
    Andrea Cianchi
    Luboš Pick
    Lenka Slavíková
    Analysis and Mathematical Physics, 2021, 11
  • [34] Orlicz-Sobolev boundary trace embeddings
    Cianchi, Andrea
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (02) : 431 - 449
  • [35] APPROXIMATION IN SOBOLEV-ORLICZ AND SOBOLEV SPACES
    FOUGERES, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (06): : 479 - &
  • [36] On F-Sobolev and Orlicz-Sobolev inequalities
    Cholryong Kang
    Fengyu Wang
    Frontiers of Mathematics in China, 2009, 4 : 659 - 667
  • [37] Sobolev-Type Inequalities on Musielak–Orlicz–Morrey Spaces of an Integral Form
    Takao Ohno
    Tetsu Shimomura
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [38] SOBOLEV'S INEQUALITIES FOR HERZ-MORREY-ORLICZ SPACES ON THE HALF SPACE
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (02): : 433 - 453
  • [39] On F-Sobolev and Orlicz-Sobolev inequalities
    Kang, Cholryong
    Wang, Fengyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (04) : 659 - 667
  • [40] SOBOLEV AND TRUDINGER TYPE INEQUALITIES ON GRAND MUSIELAK-ORLICZ-MORREY SPACES
    Maeda, Fumi-Yuki
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 403 - 426