A novel green synthesized magnetic biochar from white tea residue for the removal of Pb(II) and Cd(II) from aqueous solution: Regeneration and sorption mechanism

被引:44
|
作者
Zhang, Na [1 ]
Reguyal, Febelyn [1 ]
Praneeth, Sai [2 ]
Sarmah, Ajit K. [1 ,3 ]
机构
[1] Univ Auckland, Fac Engn, Dept Civil & Environm Engn, Private Bag 92019, Auckland 1142, New Zealand
[2] Wayne State Univ, Dept Civil & Environm Engn, Detroit, MI 48202 USA
[3] Univ Western Australia, UWA Inst Agr, Sch Agr & Environm, Nedlands, WA 6009, Australia
关键词
Magnetic biochar; Green synthesis; Adsorption; Regeneration; Mechanism; WASTE-WATER; ADSORPTION; KINETICS; CADMIUM; IONS; EQUILIBRIUM; ISOTHERM; METALS; LEAD; DYE;
D O I
10.1016/j.envpol.2023.121806
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel biochar-based magnetic nanocomposite (GSMB) was prepared from white tea waste via green synthesis method. The sorption properties and regeneration of GSMB were studied using Pb(II) and Cd(II) to better un-derstand its ability in heavy metal recovery. The adsorption kinetics data were modelled using pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models, while Pb(II) and Cd(II) isotherms were modelled with Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. Results showed that Pb(II) adsorption was well described by pseudo-second order while the Elovich model best described the Cd(II) adsorption trend, indicating the sorption of Pb(II) and Cd(II) onto GSMB were dominated by chemisoprtion rather than physisorption. Langmuir model gave the best fit to Pb(II) sorption, and the Cd(II) adsorption was well described by Temkin model. The maximum adsorption capacity of Pb(II) and Cd(II) onto GSMB were 81.6 mg/g and 38.6 mg/g, respectively. Scanning electron microscope coupled with energy dispersive x-ray, X-ray diffraction and Fourier transform infrared spectroscopy analyses revealed that iron oxides played a key role during adsorption process and the adsorption mechanisms include surface electrostatic attraction and surface complexation for both metals. Among the five regenerating agents studied, 0.1 M EDTA-2Na was favoured for the desorption of Pb(II) onto GMSB. The findings from the regeneration studies revealed similar to 54% of Pb(II) adsorption capacity remained after three sorption-desorption cycles implying the adsorbent could potentially be further reused.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Removal of Pb(II) from aqueous solution by adsorption using activated tea waste
    Mondal, Monoj Kumar
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2010, 27 (01) : 144 - 151
  • [22] Pyrolysis of sewage sludge by electromagnetic induction: Biochar properties and application in adsorption removal of Pb(II), Cd(II) from aqueous solution
    Xue, Yongjie
    Wang, Chen
    Hu, Zhenhua
    Zhou, Yi
    Xiao, Yue
    Wang, Teng
    WASTE MANAGEMENT, 2019, 89 : 48 - 56
  • [23] Novel Zn-Fe engineered kiwi branch biochar for the removal of Pb(II) from aqueous solution
    Tan, Yuehui
    Wan, Xirui
    Zhou, Ting
    Wang, Le
    Yin, Xianqiang
    Ma, Aisheng
    Wang, Nong
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 424
  • [24] Mechanism of Hg(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by Aspergillus niger spores
    Cui, Han
    Liu, Xiang
    Li, Kun
    Cao, Ting-Ting
    Cui, Chongwei
    Wang, Jing-Yao
    SEPARATION SCIENCE AND TECHNOLOGY, 2020, 55 (05) : 848 - 859
  • [25] Magnetic Activated Carbon for Efficient Removal of Pb(II) from Aqueous Solution
    Zhang, Shengli
    Chen, Haoyun
    Tao, Lichun
    Huang, Chinpao
    Jiang, Man
    Zhou, Zuowan
    ENVIRONMENTAL ENGINEERING SCIENCE, 2018, 35 (02) : 111 - 120
  • [26] Activated mineral adsorbent for the efficient removal of Pb(II) and Cd(II) from aqueous solution: adsorption performance and mechanism studies
    Zheng, Tao
    Zhou, Xiaohui
    Guo, Jing
    Zhong, Chubin
    Liu, Yaochi
    WATER SCIENCE AND TECHNOLOGY, 2020, 82 (09) : 1896 - 1911
  • [27] Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan
    Karthik, Rathinam
    Meenakshi, Sankaran
    CHEMICAL ENGINEERING JOURNAL, 2015, 263 : 168 - 177
  • [28] Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent
    Ibrahim, Hanan S.
    Ammar, Nabila S.
    Soylak, Mustafa
    Ibrahim, Medhat
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2012, 96 : 413 - 420
  • [29] Chemical modification of rose leaf with polypyrrole for the removal of Pb (II) and Cd (II) from aqueous solution
    Canoluk, Ceyda
    Gursoy, Songul Sen
    JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2017, 54 (11): : 782 - 790
  • [30] Investigation of Pb (II) and Cd (II) removal from aqueous solution by organic-modified xonotlite
    Zhou, Wei
    Xin, Junliang
    Tang, Wenqing
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2022, 102 (19) : 7736 - 7753