Segmentation of Structural Elements from 3D Point Cloud Using Spatial Dependencies for Sustainability Studies

被引:2
|
作者
Ntiyakunze, Joram [1 ]
Inoue, Tomo [1 ]
机构
[1] Kyushu Univ, Grad Sch Design, Dept Environm & Heritage Design, 4-9-1 Shiobaru, Minami ku, Fukuoka 8158540, Japan
关键词
point cloud; planar patches; segmentation; classification; occlusion; structural elements; BUILDING MODELS; RECONSTRUCTION; BIM; CONSTRUCTION; INTERIORS;
D O I
10.3390/s23041924
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The segmentation of point clouds obtained from existing buildings provides the ability to perform a detailed structural analysis and overall life-cycle assessment of buildings. The major challenge in dealing with existing buildings is the presence of diverse and large amounts of occluding objects, which limits the segmentation process. In this study, we use unsupervised methods that integrate knowledge about the structural forms of buildings and their spatial dependencies to segment points into common structural classes. We first develop a novelty approach of joining remotely disconnected patches that happened due to missing data from occluding objects using pairs of detected planar patches. Afterward, segmentation approaches are introduced to classify the pairs of refined planes into floor slabs, floor beams, walls, and columns. Finally, we test our approach using a large dataset with high levels of occlusions. We also compare our approach to recent segmentation methods. Compared to many other segmentation methods the study shows good results in segmenting structural elements by their constituent surfaces. Potential areas of improvement, particularly in segmenting walls and beam classes, are highlighted for further studies.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Spatial deformable transformer for 3D point cloud registration
    Fengguang Xiong
    Yu Kong
    Shuaikang Xie
    Liqun Kuang
    Xie Han
    Scientific Reports, 14
  • [32] 3D Building Internal Structural Component Segmentation from Point Cloud Data Using DBSCAN and Modified RANSAC with Normal Deviation Conditions
    Doougphummet, Thanapon
    Boonserm, Petarpa
    Lipikorn, Rajalida
    DATA SCIENCE AND ALGORITHMS IN SYSTEMS, 2022, VOL 2, 2023, 597 : 87 - 99
  • [33] 3D point cloud semantic segmentation: state of the art and challenges
    Wang Y.
    Hu Y.
    Kong Q.
    Zeng H.
    Zhang L.
    Fan B.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (10): : 1653 - 1664
  • [34] Generalized Few-Shot 3D Point Cloud Segmentation
    Yang, Shuqian
    Ding, Henhui
    Jiang, Xudong
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [35] A survey on weakly supervised 3D point cloud semantic segmentation
    Wang, Jingyi
    Liu, Yu
    Tan, Hanlin
    Zhang, Maojun
    IET COMPUTER VISION, 2024, 18 (03) : 329 - 342
  • [36] Fast 3D point-cloud segmentation for interactive surfaces
    Mthunzi, Everett M.
    Getschmann, Christopher
    Echtler, Florian
    ISS '21 COMPANION: COMPANION PROCEEDINGS OF THE 2021 CONFERENCE ON INTERACTIVE SURFACES AND SPACES SPONSORED, 2021, : 33 - 37
  • [37] Object Segmentation and Recognition in 3D Point Cloud with Language Model
    Yang Yi
    Yan Guang
    Zhu Hao
    Fu Meng-yin
    Wang Mei-ling
    PROCESSING OF 2014 INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INFORMATION INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2014,
  • [38] An Improved Fast Ground Segmentation Algorithm for 3D Point Cloud
    Leng, Zhixin
    Li, Shu
    Li, Xin
    Gao, Bingzhao
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 5016 - 5020
  • [39] Investigate Indistinguishable Points in Semantic Segmentation of 3D Point Cloud
    Xu, Mingye
    Zhou, Zhipeng
    Zhang, Junhao
    Qiao, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3047 - 3055
  • [40] 3D Point Cloud Video Segmentation Based on Interaction Analysis
    Lin, Xiao
    Casas, Josep R.
    Pardas, Montse
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 821 - 835