A multi-label social short text classification method based on contrastive learning and improved ml-KNN

被引:3
|
作者
Tian, Gang [1 ]
Wang, Jiachang [1 ]
Wang, Rui [2 ]
Zhao, Guangxin [1 ]
He, Cheng [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Energy & Min Engn, Qingdao, Peoples R China
关键词
contrastive learning; deep learning; improved ml-KNN; multi-label text classification;
D O I
10.1111/exsy.13547
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Short texts on social platforms often have the problems of diverse categories and semantic sparsity, making it challenging to identify the diverse intentions of users. To address this issue, this article proposes a multi-label social short text classification method (IML-CL) based on contrastive learning and improved ml-KNN. First, a contrastive learning approach is employed to train a multi-label text classification model. This approach improves semantic sparsity by leveraging the knowledge from the existing samples to enrich the feature representation of short texts. Simultaneously, an improved ml-KNN algorithm is developed to enhance the accuracy of label prediction. This algorithm utilizes a two-layer nearest neighbor rule and introduces a penalty function and weight optimization. Next, the model generates the feature representation for the test sample and predicts its label. Additionally, the improved ml-KNN algorithm retrieves neighbors of the test sample and uses their label information for prediction. Finally, the two predictions are combined to obtain the final prediction, which accurately identifies the user's intention. The experimental results demonstrate that, on the dataset constructed in this article, the IML-CL method effectively boosts the performance of the baseline model.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Deep Learning for Extreme Multi-label Text Classification
    Liu, Jingzhou
    Chang, Wei-Cheng
    Wu, Yuexin
    Yang, Yiming
    SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 115 - 124
  • [32] Effective Multi-Label Active Learning for Text Classification
    Yang, Bishan
    Sun, Jian-Tao
    Wang, Tengjiao
    Chen, Zheng
    KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 917 - 925
  • [33] Hierarchical Transfer Learning for Multi-label Text Classification
    Banerjee, Siddhartha
    Akkaya, Cem
    Perez-Sorrosal, Francisco
    Tsioutsiouliklis, Kostas
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 6295 - 6300
  • [34] Active Learning Strategies for Multi-Label Text Classification
    Esuli, Andrea
    Sebastiani, Fabrizio
    ADVANCES IN INFORMATION RETRIEVAL, PROCEEDINGS, 2009, 5478 : 102 - +
  • [35] A Multi-Label Text Classification Method Based on Labels Vector Fusion
    Tao, Yang
    Cui, Zhu
    Zhu Wenjun
    2018 INTERNATIONAL CONFERENCE ON PROMISING ELECTRONIC TECHNOLOGIES (ICPET 2018), 2018, : 80 - 85
  • [36] Text classification based on a novel cost-sensitive ensemble multi-label learning method
    Hu, Haifeng
    Zhang, Tao
    Wu, Jiansheng
    Journal of Software Engineering, 2016, 10 (01): : 42 - 53
  • [37] Multi-Label Text Classification Based on DistilBERT and Label Correlation
    Wang, Xuyang
    Geng, Liuqing
    Zhang, Xin
    Computer Engineering and Applications, 2024, 60 (23) : 168 - 175
  • [38] Multi-label maximum entropy model for social emotion classification over short text
    Li, Jun
    Rao, Yanghui
    Jin, Fengmei
    Chen, Huijun
    Xiang, Xiyun
    NEUROCOMPUTING, 2016, 210 : 247 - 256
  • [39] Multi-label Text Classification Based on Improved Seq2Seq
    Chen, Xiaolong
    Cheng, Jieren
    Rong, Zhixin
    Xu, Wenghang
    Hua, Shuai
    Tang, Zhu
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 439 - 446
  • [40] Variational Continuous Label Distribution Learning for Multi-Label Text Classification
    Zhao, Xingyu
    An, Yuexuan
    Xu, Ning
    Geng, Xin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2716 - 2729