Acetylcholinesterase Inhibition in Rats and Humans Following Acute Fenitrothion Exposure Predicted by Physiologically Based Kinetic Modeling-Facilitated Quantitative In Vitro to In Vivo Extrapolation

被引:5
|
作者
Chen, Jiaqi [1 ]
Zhao, Shensheng [1 ,2 ]
Wesseling, Sebastiaan [1 ]
Kramer, Nynke I. [1 ]
Rietjens, Ivonne M. C. M. [1 ]
Bouwmeester, Hans [1 ]
机构
[1] Wageningen Univ & Res, Div Toxicol, NL-6708 WE Wageningen, Netherlands
[2] Procter & Gamble Co, Beijing 101318, Peoples R China
关键词
organophosphate pesticide; fenitrothion; acetylcholinesteraseinhibition; physiologically based kinetic (PBK) model; quantitative in vitro to in vivo extrapolation (QIVIVE); DRUG DISCOVERY; METABOLISM; CHOLINESTERASE; PESTICIDES; CLEARANCE; TOXICITY; LIVER; RISK; BUTYRYLCHOLINESTERASE; PARAOXONASE;
D O I
10.1021/acs.est.3c07077
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Worldwide use of organophosphate pesticides as agricultural chemicals aims to maintain a stable food supply, while their toxicity remains a major public health concern. A common mechanism of acute neurotoxicity following organophosphate pesticide exposure is the inhibition of acetylcholinesterase (AChE). To support Next Generation Risk Assessment for public health upon acute neurotoxicity induced by organophosphate pesticides, physiologically based kinetic (PBK) modeling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE) approach was employed in this study, with fenitrothion (FNT) as an exemplary organophosphate pesticide. Rat and human PBK models were parametrized with data derived from in silico predictions and in vitro incubations. Then, PBK model-based QIVIVE was performed to convert species-specific concentration-dependent AChE inhibition obtained from in vitro blood assays to corresponding in vivo dose-response curves, from which points of departure (PODs) were derived. The obtained values for rats and humans were comparable with reported no-observed-adverse-effect levels (NOAELs). Humans were found to be more susceptible than rats toward erythrocyte AChE inhibition induced by acute FNT exposure due to interspecies differences in toxicokinetics and toxicodynamics. The described approach adequately predicts toxicokinetics and acute toxicity of FNT, providing a proof-of-principle for applying this approach in a 3R-based chemical risk assessment paradigm.
引用
收藏
页码:20521 / 20531
页数:11
相关论文
共 35 条
  • [31] Physiologically based pharmacokinetic-pharmacodynamic modeling for prediction of vonoprazan pharmacokinetics and its inhibition on gastric acid secretion following intravenous/oral administration to rats, dogs and humans
    Kong, Wei-min
    Sun, Bin-bin
    Wang, Zhong-jian
    Zheng, Xiao-ke
    Zhao, Kai-jing
    Chen, Yang
    Zhang, Jia-xin
    Liu, Pei-hua
    Zhu, Liang
    Xu, Ru-jun
    Li, Ping
    Liu, Li
    Liu, Xiao-dong
    ACTA PHARMACOLOGICA SINICA, 2020, 41 (06) : 852 - 865
  • [32] Human health risk assessment of 6:2 Cl-PFESA through quantitative in vitro to in vivo extrapolation by integrating cell-based assays, an epigenetic key event, and physiologically based pharmacokinetic modeling
    Li, Chuanhai
    Jiang, Lidan
    Zhang, Donghui
    Qi, Yuan
    Wang, Xinyi
    Jin, Yuan
    Liu, Xinya
    Lin, Yongfeng
    Luo, Jiao
    Xu, Lin
    Zhao, Kunming
    Yu, Dianke
    ENVIRONMENT INTERNATIONAL, 2023, 173
  • [33] Quantitative in vitro-to-in vivo extrapolation of human adrenergic and trace amine-associated receptor 1 potencies of pre-workout supplement ingredients using physiologically based kinetic modelling-based reverse dosimetry
    Pinckaers, Nicole E. T.
    Blankesteijn, W. Matthijs
    Mircheva, Anastasiya
    Punt, Ans
    Opperhuizen, Antoon
    van Schooten, Frederik-Jan
    Vrolijk, Misha
    ARCHIVES OF TOXICOLOGY, 2025,
  • [34] Combining In Vitro Data and Physiologically Based Kinetic Modeling Facilitates Reverse Dosimetry to Define In Vivo Dose-Response Curves for Bixin- and Crocetin-Induced Activation of PPARγ in Humans
    Suparmi, Suparmi
    de Haan, Laura
    Spenkelink, Albertus
    Louisse, Jochem
    Beekmann, Karsten
    Rietjens, Ivonne M. C. M.
    MOLECULAR NUTRITION & FOOD RESEARCH, 2020, 64 (02)
  • [35] Computational Predictions of Mycophenolic Acid Exposure after Oral Administration using a Joined In Vitro-In Vivo Extrapolation and Physiologically-Based Pharmacokinetic Modeling Approach in Caucasian and Chinese Healthy Volunteers and Patients With Varying Degree of Renal Impairment
    Joshi, Rujuta
    Venkataramanan, Raman
    Kalluri, Hari Varun
    TRANSPLANTATION, 2017, 101 (05) : S13 - S14