Learning feature alignment and dual correlation for few-shot image classification

被引:2
|
作者
Huang, Xilang [1 ]
Choi, Seon Han [1 ,2 ]
机构
[1] Ewha Womans Univ, Dept Elect & Elect Engn, Seoul, South Korea
[2] Ewha Womans Univ, Grad Program Smart Factory, Seoul, South Korea
关键词
image classification; machine learning; metric learning; NETWORK;
D O I
10.1049/cit2.12273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot image classification is the task of classifying novel classes using extremely limited labelled samples. To perform classification using the limited samples, one solution is to learn the feature alignment (FA) information between the labelled and unlabelled sample features. Most FA methods use the feature mean as the class prototype and calculate the correlation between prototype and unlabelled features to learn an alignment strategy. However, mean prototypes tend to degenerate informative features because spatial features at the same position may not be equally important for the final classification, leading to inaccurate correlation calculations. Therefore, the authors propose an effective intraclass FA strategy that aggregates semantically similar spatial features from an adaptive reference prototype in low-dimensional feature space to obtain an informative prototype feature map for precise correlation computation. Moreover, a dual correlation module to learn the hard and soft correlations was developed by the authors. This module combines the correlation information between the prototype and unlabelled features in both the original and learnable feature spaces, aiming to produce a comprehensive cross-correlation between the prototypes and unlabelled features. Using both FA and cross-attention modules, our model can maintain informative class features and capture important shared features for classification. Experimental results on three few-shot classification benchmarks show that the proposed method outperformed related methods and resulted in a 3% performance boost in the 1-shot setting by inserting the proposed module into the related methods.
引用
收藏
页码:303 / 318
页数:16
相关论文
共 50 条
  • [31] Dual-model Collaborative Learning with Knowledge Clustering for Few-shot Image Classification
    Min Xiong
    Wenming Cao
    Zhineng Zhao
    Multimedia Tools and Applications, 2024, 83 (9) : 26527 - 26546
  • [32] Dual-model Collaborative Learning with Knowledge Clustering for Few-shot Image Classification
    Xiong, Min
    Cao, Wenming
    Zhao, Zhineng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 26527 - 26546
  • [33] Few-Shot Multispectral-Hyperspectral Image Collaborative Classification With Feature Distribution Enhancement and Subdomain Alignment
    Guo, Bin
    Liu, Tianzhu
    Zhang, Xiangrong
    Gu, Yanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [34] Dual-Branch Domain Adaptation Few-Shot Learning for Hyperspectral Image Classification
    Wang, Zhuowei
    Zhao, Shihui
    Zhao, Genping
    Song, Xiaoyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [35] A Feature Generator for Few-Shot Learning
    Kanagalingam, Heethanjan
    Pathmanathan, Thenukan
    Ketheeswaran, Navaneethan
    Vathanakumar, Mokeeshan
    Afham, Mohamed
    Rodrigo, Ranga
    arXiv,
  • [36] Quantum Few-Shot Image Classification
    Huang, Zhihao
    Shi, Jinjing
    Li, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2025, 55 (01) : 194 - 206
  • [37] Semantic-Aware Feature Aggregation for Few-Shot Image Classification
    Fusheng Hao
    Fuxiang Wu
    Fengxiang He
    Qieshi Zhang
    Chengqun Song
    Jun Cheng
    Neural Processing Letters, 2023, 55 : 6595 - 6609
  • [38] Semantic-Aware Feature Aggregation for Few-Shot Image Classification
    Hao, Fusheng
    Wu, Fuxiang
    He, Fengxiang
    Zhang, Qieshi
    Song, Chengqun
    Cheng, Jun
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 6595 - 6609
  • [39] Adaptive feature recalibration transformer for enhancing few-shot image classification
    Song, Wei
    Huang, Yaobin
    VISUAL COMPUTER, 2025,
  • [40] A novel method of data and feature enhancement for few-shot image classification
    Wu, Yirui
    Wu, Benze
    Zhang, Yunfei
    Wan, Shaohua
    SOFT COMPUTING, 2023, 27 (08) : 5109 - 5117