CNN-based medicinal plant identification and classification using optimized SVM

被引:5
|
作者
Diwedi, Himanshu Kumar [1 ]
Misra, Anuradha [1 ]
Tiwari, Amod Kumar [2 ]
机构
[1] Amity Univ, Amity Sch Engn & Technol, Dept Comp Sci & Engn, Lucknow Campus, Lucknow, India
[2] Rajkiya Engn Coll, Dept Comp Sci & Engn, Sonbhadra, Uttar Pradesh, India
关键词
Convolutional neural network; Support vector machine; ResNet50; Transfer learning; Indian medicinal plants; Classification; IMPLAD; VISION;
D O I
10.1007/s11042-023-16733-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The exact and unfailing categorization of medicinal plants exceeds the capabilities of the average individual because it necessitates in-depth subject expertise and physical detection is cumbersome and imprecise owing to human mistakes. There have been multiple efforts to automate the recognition of medicinal plants using images of plant parts like flowers, leaves, and bark. The most trustworthy data source, according to research, is Leaf. An Enhanced Convolutional Neural Network architecture (using modified ResNet50) with Progressive Transfer Learning (ECNN-PTL) has been proposed in this paper. The suggested method uses an improved ReNet50 framework for feature extraction along with PTL. Classification has been done using an Optimized Support Vector Machine (OSVM). The classical SVM hyperparameters are tuned further by the Adam optimizer to achieve a better performance model. During the first stage of training, the initial levels of the pre-trained ResNet50 architecture have been frozen while the recently introduced levels have been taught using a differentiated learning rate. In the second step, the refined model from the first stage is loaded and trained by restructuring. This technique has been replicated so that in these two learning steps, the image size is allowed to gradually rise from 64, 128, and 150 to 256 pixels. The proposed ResNet-50 effectively max-pools the activation from the previous fully connected layer to the subsequent convolution layer. In the trials, the maximum and average activations from the previous convolution are kept, giving the model knowledge of both the approaches and enhancing performance. The Indian Medicinal Plants Database (IMPLAD) has been used to compile the list of online medicinal plant species.The improved ResNet50 modelOSVM classifier in the ECNN-PTLapproach has been compared with baseline models like VGG16, VGG19 and ResNet50 in terms of accuracy, precision, recall, error rate and execution time. The modified ResNet50 + OSVM model achieve a testing phase accuracy of 96.8% and a training phase accuracy of 98.5%.
引用
收藏
页码:33823 / 33853
页数:31
相关论文
共 50 条
  • [1] CNN-based medicinal plant identification and classification using optimized SVM
    Himanshu Kumar Diwedi
    Anuradha Misra
    Amod Kumar Tiwari
    Multimedia Tools and Applications, 2024, 83 : 33823 - 33853
  • [2] Enhancing Sika Deer Identification: Integrating CNN-Based Siamese Networks with SVM Classification
    Sharma, Sandhya
    Timilsina, Suresh
    Gautam, Bishnu Prasad
    Watanabe, Shinya
    Kondo, Satoshi
    Sato, Kazuhiko
    ELECTRONICS, 2024, 13 (11)
  • [3] Optimum CNN-Based Plant Mutant Classification
    Goh, Yeh Huann
    Ng, Chee Ho
    Lee, Yoon Ket
    Teoh, Choe Yung
    Goh, Yann Ling
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0679 - 0682
  • [4] Medicinal Plant identification in the wild by using CNN
    Trung Nguyen Quoc
    Vinh Truong Hoang
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 25 - 29
  • [5] Optimized Input for CNN-Based Hyperspectral Image Classification Using Spatial Transformer Network
    He, Xin
    Chen, Yushi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (12) : 1884 - 1888
  • [6] SVM and KNN Based CNN Architectures for Plant Classification
    Ghosh, Sukanta
    Singh, Amar
    Kavita
    Jhanjhi, N. Z.
    Masud, Mehedi
    Aljahdali, Sultan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 4257 - 4274
  • [7] A CNN-based image detector for plant leaf diseases classification
    Falaschetti, Laura
    Manoni, Lorenzo
    Di Leo, Denis
    Pau, Danilo
    Tomaselli, Valeria
    Turchetti, Claudio
    HARDWAREX, 2022, 12
  • [8] Optimized CNN-based Brain Tumor Segmentation and Classification using Artificial Bee Colony and Thresholding
    Babu, P. Ashok
    Rao, B. V. Subba
    Reddy, Y. Vijay Bhaskar
    Kumar, G. Rajendra
    Rao, J. Nageswara
    Koduru, Surendra Kumar Reddy
    Kumar, G. Sunil
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2023, 18 (01)
  • [9] CNN-based classification of phonocardiograms using fractal techniques
    Riccio, Daniel
    Brancati, Nadia
    Sannino, Giovanna
    Verde, Laura
    Frucci, Maria
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [10] Face Mask Detection Using GoogLeNet CNN-Based SVM Classifiers
    Sunnetci, Kubilay Muhammed
    Akben, Selahaddin Batuhan
    Kara, Mevlude Merve
    Alkan, Ahmet
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (02): : 645 - 658