MG-MVSNet: Multiple granularities feature fusion network for multi-view stereo

被引:10
|
作者
Zhang, Xuedian [1 ]
Yang, Fanzhou [1 ]
Chang, Min [1 ]
Qin, Xiaofei [1 ]
机构
[1] Univ Shanghai Sci & Technol, Key Lab Opt Technol & Instrument Med, Minist Educ, Shanghai 200093, Peoples R China
基金
国家重点研发计划;
关键词
Multi-view stereo; 3D reconstruction; Deep learning; Multiple granularities feature fusion;
D O I
10.1016/j.neucom.2023.01.062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of Multi-View Stereo is to reconstruct the 3D point cloud model from multiple views. With the development of deep learning, more and more learning-based research has achieved remarkable results. However, existing methods ignore the fine-grained features of the bottom layer, which leads to the poor quality of model reconstruction, especially in terms of completeness. Besides, current methods still rely on a large amount of consumed memory resources because of the application of 3D convolution. To this end, this paper proposes a Multiple Granularities Feature Fusion Network for Multi-View Stereo, an end-to-end depth estimation network combining global and local features, which is characterized by fine-granularity multi-feature fusion. Firstly, we propose a dense feature adaptive connection module, which can adaptively fuse the global and local features in the scene, provide a more complete and effective fea-ture map for inferring a more detailed depth map, and make the ultimate model more complete. Secondly, in order to further improve the accuracy and completeness of the reconstructed point cloud, we introduce normal and edge loss futead of only using depth loss functions as in the existing methods, which makes the network more sensitive to small depth structures. Finally, we propose distributed 3D convolution instead of traditional 3D convolution, which reduces memory consumption. The experimen-tal results on the DTU and Tanks & Temples datasets demonstrate that the proposed method in this papaer achieves the state-of-the-art performance, which proves the accuracy and effectiveness of the MG-MVSNet proposed in this paper.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:35 / 47
页数:13
相关论文
共 50 条
  • [21] Transformer-guided Feature Pyramid Network for Multi-View Stereo
    Wang, Lina
    She, Jiangfeng
    Zhao, Qiang
    Wen, Xiang
    Guan, Yuzheng
    NEUROCOMPUTING, 2025, 617
  • [22] Multi-View Stereo by Temporal Nonparametric Fusion
    Hou, Yuxin
    Kannala, Juho
    Solin, Arno
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 2651 - 2660
  • [23] EI-MVSNet: Epipolar-Guided Multi-View Stereo Network With Interval-Aware Label
    Chang, Jiahao
    He, Jianfeng
    Zhang, Tianzhu
    Yu, Jiyang
    Wu, Feng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 753 - 766
  • [24] ARAI-MVSNet: A multi-view stereo depth estimation network with adaptive depth range and depth interval
    Zhang, Song
    Xu, Wenjia
    Wei, Zhiwei
    Zhang, Lili
    Wang, Yang
    Liu, Junyi
    PATTERN RECOGNITION, 2023, 144
  • [25] EA-MVSNet: Learning Error-Awareness for Enhanced Multi-View Stereo
    Gu, Wencong
    Xiao, Haihong
    Zhao, Xueyan
    Kang, Wenxiong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 12127 - 12141
  • [26] PA-MVSNet: Sparse-to-Dense Multi-View Stereo With Pyramid Attention
    Zhang, Ke
    Liu, Mengyu
    Zhang, Jinlai
    Dong, Zhenbiao
    IEEE ACCESS, 2021, 9 : 27908 - 27915
  • [27] Bi-directional Recurrent MVSNet for High-resolution Multi-view Stereo
    Fujitomi, Taku
    Ito, Seiya
    Kaneko, Naoshi
    Sumi, Kazuhiko
    PROCEEDINGS OF 17TH INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS (MVA 2021), 2021,
  • [28] MULTI-VIEW IMAGE FEATURE CORRELATION GUIDED COST AGGREGATION FOR MULTI-VIEW STEREO
    Lai, Yawen
    Qiu, Ke
    Wang, Ronggang
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [29] Multi-View Guided Multi-View Stereo
    Poggi, Matteo
    Conti, Andrea
    Mattoccia, Stefano
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 8391 - 8398
  • [30] Learnable Graph Convolutional Network and Feature Fusion for Multi-view Learning
    Chen, Zhaoliang
    Fu, Lele
    Yao, Jie
    Guo, Wenzhong
    Plant, Claudia
    Wang, Shiping
    arXiv, 2022,