Virtual alignment of pathology image series for multi-gigapixel whole slide images

被引:20
|
作者
Gatenbee, Chandler D. [1 ]
Baker, Ann-Marie [2 ]
Prabhakaran, Sandhya [1 ]
Swinyard, Ottilie [2 ]
Slebos, Robbert J. C. [3 ]
Mandal, Gunjan [4 ]
Mulholland, Eoghan [5 ]
Andor, Noemi [1 ]
Marusyk, Andriy [6 ]
Leedham, Simon [5 ]
Conejo-Garcia, Jose R. [4 ]
Chung, Christine H. [3 ]
Robertson-Tessi, Mark [1 ]
Graham, Trevor A. [2 ]
Anderson, Alexander R. A. [1 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Integrated Math Oncol, 12902 Magnolia Dr,SRB 4, Tampa, FL 33612 USA
[2] Queen Mary Univ London, Barts Canc Inst, Ctr Genom & Computat Biol, Evolut & Canc Lab, London EC1M 6BQ, England
[3] H Lee Moffitt Canc Ctr & Res Inst, Dept Head & Neck Endocrine Oncol, 12902 Magnolia Dr,CSB 6, Tampa, FL USA
[4] H Lee Moffitt Canc Ctr & Res Inst, Dept Immunol, 12902 Magnolia Dr,MRC, Tampa, FL USA
[5] Univ Oxford, Wellcome Ctr Human Genet, Oxford OX3 7BN, England
[6] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Physiol, 12902 Magnolia Dr,SRB 4, Tampa, FL USA
关键词
REGISTRATION;
D O I
10.1038/s41467-023-40218-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Interest in spatial omics is on the rise, but generation of highly multiplexed images remains challenging, due to cost, expertise, methodical constraints, and access to technology. An alternative approach is to register collections of whole slide images (WSI), generating spatially aligned datasets. WSI registration is a two-part problem, the first being the alignment itself and the second the application of transformations to huge multi-gigapixel images. To address both challenges, we developed Virtual Alignment of pathoLogy Image Series (VALIS), software which enables generation of highly multiplexed images by aligning any number of brightfield and/or immunofluorescent WSI, the results of which can be saved in the ome.tiff format. Benchmarking using publicly available datasets indicates VALIS provides state-of-the-art accuracy in WSI registration and 3D reconstruction. Leveraging existing open-source software tools, VALIS is written in Python, providing a free, fast, scalable, robust, and easy-to-use pipeline for registering multi-gigapixel WSI, facilitating downstream spatial analyses. The spatial organization of a tumor affects how it grows and responds to treatment. Here, the authors present VALIS, a software to align sets of whole slide images (WSI) with state-of-the-art accuracy, enabling spatial studies of the tumor ecology.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Image Quality Assessment in Digital Pathology - The Analysis of Background in Whole Slide Images
    Schrader, Thomas
    Nadolny, Anne
    Piduch, Robert
    Hufnagl, Peter
    PROCEEDINGS IWBBIO 2014: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1 AND 2, 2014, : 147 - 147
  • [22] IHCSurv: Effective Immunohistochemistry Priors for Cancer Survival Analysis in Gigapixel Multi-stain Whole Slide Images
    Zhang, Yejia
    Chao, Hanqing
    Qiu, Zhongwei
    Liu, Wenbin
    Shen, Yixuan
    Sapkota, Nishchal
    Gu, Pengfei
    Chen, Danny Z.
    Lu, Le
    Yan, Ke
    Jin, Dakai
    Bian, Yun
    Jiang, Hui
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IV, 2024, 15004 : 211 - 221
  • [23] Pathology Image Exchange: The Dutch Digital Pathology Platform for Exchange of Whole-Slide Images for Efficient Teleconsultation, Telerevision, and Virtual Expert Panels
    van Diest, Paul J.
    Huisman, Andre
    van Ekris, Jaap
    Meijer, Jos
    Willems, Stefan
    Hofhuis, Hannelore
    Verbeek, Xander
    van Der Wel, Myrtle
    Vos, Shoko
    Leguit, Roos
    van den Brand, Michiel
    Hebeda, Konnie
    Gruenberg, Katrien
    JCO CLINICAL CANCER INFORMATICS, 2019, 3 : 1 - 7
  • [24] Multimodal Co-Attention Transformer for Survival Prediction in Gigapixel Whole Slide Images
    Chen, Richard J.
    Lu, Ming Y.
    Weng, Wei-Hung
    Chen, Tiffany Y.
    Williamson, Drew F. K.
    Manz, Trevor
    Shady, Maha
    Mahmood, Faisal
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3995 - 4005
  • [25] Virtual 3D microscopy using multiplane whole slide images in diagnostic pathology
    Kalinski, Thomas
    Zwoenitzer, Ralf
    Sel, Saadettin
    Evert, Matthias
    Guenther, Thomas
    Hofmann, Harald
    Bernarding, Ohannes
    Roessner, Albert
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2008, 130 (02) : 259 - 264
  • [26] Integration of whole slide images into anatomic pathology workflow
    Ho, J.
    Jukic, D. M.
    Fine, J. L.
    Parwani, A.
    Gilbertson, J. R.
    MODERN PATHOLOGY, 2007, 20 : 350A - 350A
  • [27] Integration of whole slide images into anatomic pathology workflow
    Ho, J.
    Jukic, D. M.
    Fine, J. L.
    Parwani, A.
    Gilbertson, J. R.
    LABORATORY INVESTIGATION, 2007, 87 : 350A - 350A
  • [28] Multi-scale representation attention based deep multiple instance learning for gigapixel whole slide image analysis
    Xiang, Hangchen
    Shen, Junyi
    Yan, Qingguo
    Xu, Meilian
    Shi, Xiaoshuang
    Zhu, Xiaofeng
    MEDICAL IMAGE ANALYSIS, 2023, 89
  • [29] Standardizing the use of whole slide images in digital pathology
    Daniel, Christel
    Garcia Rojo, Marcial
    Klossa, Jacques
    Della Mea, Vincenzo
    Booker, David
    Beckwith, Bruce A.
    Schrader, Thomas
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2011, 35 (7-8) : 496 - 505
  • [30] Scaling Resolution of Gigapixel Whole Slide Images using Spatial Decomposition on Convolutional Neural Networks
    Tsaris, Aristeidis
    Romero, Josh
    Kurth, Thorsten
    Hinkle, Jacob
    Yoon, Hong-Jun
    Wang, Feiyi
    Dash, Sajal
    Tourassi, Georgia
    PROCEEDINGS OF THE PLATFORM FOR ADVANCED SCIENTIFIC COMPUTING CONFERENCE, PASC 2023, 2023,