Virtual alignment of pathology image series for multi-gigapixel whole slide images

被引:20
|
作者
Gatenbee, Chandler D. [1 ]
Baker, Ann-Marie [2 ]
Prabhakaran, Sandhya [1 ]
Swinyard, Ottilie [2 ]
Slebos, Robbert J. C. [3 ]
Mandal, Gunjan [4 ]
Mulholland, Eoghan [5 ]
Andor, Noemi [1 ]
Marusyk, Andriy [6 ]
Leedham, Simon [5 ]
Conejo-Garcia, Jose R. [4 ]
Chung, Christine H. [3 ]
Robertson-Tessi, Mark [1 ]
Graham, Trevor A. [2 ]
Anderson, Alexander R. A. [1 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Integrated Math Oncol, 12902 Magnolia Dr,SRB 4, Tampa, FL 33612 USA
[2] Queen Mary Univ London, Barts Canc Inst, Ctr Genom & Computat Biol, Evolut & Canc Lab, London EC1M 6BQ, England
[3] H Lee Moffitt Canc Ctr & Res Inst, Dept Head & Neck Endocrine Oncol, 12902 Magnolia Dr,CSB 6, Tampa, FL USA
[4] H Lee Moffitt Canc Ctr & Res Inst, Dept Immunol, 12902 Magnolia Dr,MRC, Tampa, FL USA
[5] Univ Oxford, Wellcome Ctr Human Genet, Oxford OX3 7BN, England
[6] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Physiol, 12902 Magnolia Dr,SRB 4, Tampa, FL USA
关键词
REGISTRATION;
D O I
10.1038/s41467-023-40218-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Interest in spatial omics is on the rise, but generation of highly multiplexed images remains challenging, due to cost, expertise, methodical constraints, and access to technology. An alternative approach is to register collections of whole slide images (WSI), generating spatially aligned datasets. WSI registration is a two-part problem, the first being the alignment itself and the second the application of transformations to huge multi-gigapixel images. To address both challenges, we developed Virtual Alignment of pathoLogy Image Series (VALIS), software which enables generation of highly multiplexed images by aligning any number of brightfield and/or immunofluorescent WSI, the results of which can be saved in the ome.tiff format. Benchmarking using publicly available datasets indicates VALIS provides state-of-the-art accuracy in WSI registration and 3D reconstruction. Leveraging existing open-source software tools, VALIS is written in Python, providing a free, fast, scalable, robust, and easy-to-use pipeline for registering multi-gigapixel WSI, facilitating downstream spatial analyses. The spatial organization of a tumor affects how it grows and responds to treatment. Here, the authors present VALIS, a software to align sets of whole slide images (WSI) with state-of-the-art accuracy, enabling spatial studies of the tumor ecology.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Virtual alignment of pathology image series for multi-gigapixel whole slide images
    Chandler D. Gatenbee
    Ann-Marie Baker
    Sandhya Prabhakaran
    Ottilie Swinyard
    Robbert J. C. Slebos
    Gunjan Mandal
    Eoghan Mulholland
    Noemi Andor
    Andriy Marusyk
    Simon Leedham
    Jose R. Conejo-Garcia
    Christine H. Chung
    Mark Robertson-Tessi
    Trevor A. Graham
    Alexander R. A. Anderson
    Nature Communications, 14
  • [2] VALIS: Virtual Alignment of pathoLogy Image Series for multi-gigapixel whole slide images
    Gatenbee, Chandler Dean
    Baker, Ann-Marie
    Prabhakaran, Sandhya
    Robertson-Tessi, Mark
    Graham, Trevor
    Anderson, Alexander R.
    CANCER RESEARCH, 2023, 83 (07)
  • [3] Unsupervised mutual transformer learning for multi-gigapixel Whole Slide Image classification
    Javed, Sajid
    Mahmood, Arif
    Qaiser, Talha
    Werghi, Naoufel
    Rajpoot, Nasir
    MEDICAL IMAGE ANALYSIS, 2024, 96
  • [4] EffiDiag: an Efficient Framework for Breast Cancer Diagnosis in Multi-Gigapixel Whole Slide Images
    Liu, Shuyan
    Ren, Junda
    Chen, Zhineng
    Hu, Kai
    Xiao, Fen
    Li, Xuanya
    Gao, Xieping
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 663 - 669
  • [5] Capturing Cellular Topology in Multi-Gigapixel Pathology Images
    Lu, Wenqi
    Graham, Simon
    Bilal, Mohsin
    Rajpoot, Nasir
    Minhas, Fayyaz
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1049 - 1058
  • [6] Fast ScanNet: Fast and Dense Analysis of Multi-Gigapixel Whole-Slide Images for Cancer Metastasis Detection
    Lin, Huangjing
    Chen, Hao
    Graham, Simon
    Dou, Qi
    Rajpoot, Nasir
    Pheng-Ann Heng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) : 1948 - 1958
  • [7] Federated learning for computational pathology on gigapixel whole slide images
    Lu, Ming Y.
    Chen, Richard J.
    Kong, Dehan
    Lipkova, Jana
    Singh, Rajendra
    Williamson, Drew F. K.
    Chen, Tiffany Y.
    Mahmood, Faisal
    MEDICAL IMAGE ANALYSIS, 2022, 76
  • [8] Multi-Stained Whole Slide Image Alignment in Digital Pathology
    Deniz, Oscar
    Toomey, David
    Conway, Catherine
    Bueno, Gloria
    MEDICAL IMAGING 2015: DIGITAL PATHOLOGY, 2015, 9420
  • [9] Generating highly accurate pathology reports from gigapixel whole slide images with HistoGPT
    Tran, M.
    Schmidle, P.
    Wagner, S. J.
    Koch, V.
    Luppberger, V.
    Feuchtinger, A.
    Boehner, A.
    Kaczmarczyk, R.
    Biedermann, T.
    Eyerich, K.
    Braun, S.
    Peng, T.
    Marr, C.
    VIRCHOWS ARCHIV, 2024, 485 : S117 - S117
  • [10] Patch-Based Nonlinear Image Registration for Gigapixel Whole Slide Images
    Lotz, J.
    Olesch, J.
    Mueller, B.
    Polzin, T.
    Galuschka, P.
    Lotz, J. M.
    Heldmann, S.
    Laue, H.
    Gonzalez-Vallinas, M.
    Warth, A.
    Lahrmann, B.
    Grabe, N.
    Sedlaczek, O.
    Breuhahn, K.
    Modersitzki, J.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (09) : 1812 - 1819