Genome-Wide Identification and Characterization of Ammonium Transporter (AMT) Genes in Rapeseed (Brassica napus L.)

被引:8
|
作者
Dai, Jing [1 ]
Han, Peipei [2 ]
Walk, Thomas C. [3 ]
Yang, Ling [1 ]
Chen, Liyu [4 ]
Li, Yinshui [1 ]
Gu, Chiming [1 ]
Liao, Xing [1 ]
Qin, Lu [1 ]
机构
[1] Chinese Acad Agr Sci, Oil Crops Res Inst, Key Lab Biol & Genet Improvement Oil Crops, Minist Agr & Rural Affairs, Wuhan 430000, Peoples R China
[2] Inst Agr Sci Jiangsu Coastal Area, Yancheng 224002, Peoples R China
[3] Tropotech LLC, St Louis, MO 63141 USA
[4] Guangzhou Univ, Innovat Ctr Mol Genet & Evolut, Sch Life Sci, Guangzhou 510006, Peoples R China
关键词
genome-wide analysis; expression profile; stress response; POPULUS-SIMONII; PLASMA-MEMBRANE; NITROGEN UPTAKE; EXPRESSION; ROOTS; FAMILY; METABOLISM; QUALITY; NITRATE;
D O I
10.3390/genes14030658
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Ammonium transporters (AMTs) are plasma membrane proteins mediating ammonium uptake and transport. As such, AMTs play vital roles in ammonium acquisition and mobilization, plant growth and development, and stress and pathogen defense responses. Identification of favorable AMT genotypes is a prime target for crop improvement. However, to date, systematic identification and expression analysis of AMT gene family members has not yet been reported for rapeseed (Brassica napus L.). In this study, 20 AMT genes were identified in a comprehensive search of the B. napus genome, 14 members of AMT1 and 6 members of AMT2. Tissue expression analyses revealed that the 14 AMT genes were primarily expressed in vegetative organs, suggesting that different BnaAMT genes might function in specific tissues at the different development stages. Meanwhile, qRT-PCR analysis found that several BnaAMTs strongly respond to the exogenous N conditions, implying the functional roles of AMT genes in ammonium absorption in rapeseed. Moreover, the rapeseed AMT genes were found to be differentially regulated by N, P, and K deficiency, indicating that crosstalk might exist in response to different stresses. Additionally, the subcellular localization of several BnaAMT proteins was confirmed in Arabidopsis protoplasts, and their functions were studied in detail by heterologous expression in yeast. In summary, our studies revealed the potential roles of BnaAMT genes in N acquisition or transportation and abiotic stress response and could provide valuable resources for revealing the functionality of AMTs in rapeseed.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Genome-wide identification and characterization of SLEEPER, a transposon-derived gene family and their expression pattern in Brassica napus L.
    Zhu, Ruijia
    An, Shengzhi
    Fu, Jingyan
    Liu, Sha
    Fu, Yu
    Zhang, Ying
    Wang, Rui
    Zhao, Yun
    Wang, Maolin
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [42] Genome-wide identification of cold responsive transcription factors in Brassica napus L
    Liping Ke
    Weixia Lei
    Weiguang Yang
    Jinyu Wang
    Janfang Gao
    Jinhua Cheng
    Yuqiang Sun
    Zhixiong Fan
    Dongliang Yu
    BMC Plant Biology, 20
  • [43] Genome-wide identification of cold responsive transcription factors in Brassica napus L
    Ke, Liping
    Lei, Weixia
    Yang, Weiguang
    Wang, Jinyu
    Gao, Janfang
    Cheng, Jinhua
    Sun, Yuqiang
    Fan, Zhixiong
    Yu, Dongliang
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [44] Genome-wide identification AINTEGUMENTA-like (AIL) genes in Brassica species and expression patterns during reproductive development in Brassica napus L.
    Shen, Shulin
    Sun, Fujun
    Zhu, Meichen
    Chen, Si
    Guan, Mingwei
    Chen, Rui
    Tang, Fang
    Yin, Nengwen
    Xu, Xinfu
    Tang, Zhanglin
    Li, Jiana
    Lu, Kun
    Qu, Cunmin
    PLOS ONE, 2020, 15 (06):
  • [45] Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers
    Qu, Cunmin
    Jia, Ledong
    Fu, Fuyou
    Zhao, Huiyan
    Lu, Kun
    Wei, Lijuan
    Xu, Xinfu
    Liang, Ying
    Li, Shimeng
    Wang, Rui
    Li, Jiana
    BMC GENOMICS, 2017, 18
  • [46] GENOME-WIDE ANALYSES OF CORE REGULATORY MODULE SHATTERING CASCADE GENES IN CANOLA (BRASSICA NAPUS L.)
    Yasin, M.
    Ali, G. M.
    Riaz, M.
    Ali, S.
    Rahman, H. U.
    Iqbal, A.
    Khan, S. U.
    Shakeel, M.
    Munir, M.
    Mohibullah, M.
    Khan, M. R.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2023, 55 (03): : 681 - 694
  • [47] Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers
    Cunmin Qu
    Ledong Jia
    Fuyou Fu
    Huiyan Zhao
    Kun Lu
    Lijuan Wei
    Xinfu Xu
    Ying Liang
    Shimeng Li
    Rui Wang
    Jiana Li
    BMC Genomics, 18
  • [48] Genome-Wide Association Study Dissects the Genetic Architecture of Seed Weight and Seed Quality in Rapeseed (Brassica napus L.)
    Li, Feng
    Chen, Biyun
    Xu, Kun
    Wu, Jinfeng
    Song, Weilin
    Bancroft, Ian
    Harper, Andrea L.
    Trick, Martin
    Liu, Shengyi
    Gao, Guizhen
    Wang, Nian
    Yan, Guixin
    Qiao, Jiangwei
    Li, Jun
    Li, Hao
    Xiao, Xin
    Zhang, Tianyao
    Wu, Xiaoming
    DNA RESEARCH, 2014, 21 (04) : 355 - 367
  • [49] Genome-Wide SNP Markers Based on SLAF-Seq Uncover Breeding Traces in Rapeseed (Brassica napus L.)
    Zhou, Qinghong
    Zhou, Can
    Zheng, Wei
    Mason, Annaliese S.
    Fan, Shuying
    Wu, Caijun
    Fu, Donghui
    Huang, Yingjin
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [50] Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.)
    Haitao Li
    Bo Wang
    Qinghua Zhang
    Jing Wang
    Graham J. King
    Kede Liu
    BMC Plant Biology, 17