K-Nearest Neighbor Classifier for Uncertain Data in Feature Space

被引:0
|
作者
Lim, Sung-Yeon [1 ,2 ]
Ko, Changwan [1 ,2 ]
Jeong, Young-Seon [1 ,2 ]
Baek, Jaeseung [3 ,4 ]
机构
[1] Chonnam Natl Univ, Dept Ind Engn, Gwangju, South Korea
[2] Chonnam Natl Univ, Interdisciplinary Program Arts & Design Technol, Gwangju, South Korea
[3] Rutgers State Univ, Dept Ind & Syst Engn, Piscataway, NJ USA
[4] Northern Michigan Univ, Coll Business, Marquette, MI USA
来源
基金
新加坡国家研究基金会;
关键词
Uncertain Data; K-Nearest Neighbor Classifier; Kernel Probabilistic Distance; Feature Space; DISTANCE;
D O I
10.7232/iems.2023.22.4.414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Uncertain data, where each feature is represented by probability density functions instead of fixed values, have been widely used in diverse applications such as sensor networks, medical data, and semiconductor wafer data. This paper proposes a new kernel function based uncertain K-nearest neighbor classifier (uncertain K-NN) algorithm for uncertain data objects in feature space. Assuming normality in the feature space, we utilize a kernel Bhattacharyya probabilistic distance measure for probabilistic distance measures. We compare the proposed uncertain K-NN classifier in feature space to an existing classifier, namely, the K-Nearest Neighbor classifier in the original space. The experimental results show the advantages of the proposed classifiers with both simulated and real data.
引用
收藏
页码:414 / 421
页数:8
相关论文
共 50 条
  • [21] BAOA: Binary Arithmetic Optimization Algorithm With K-Nearest Neighbor Classifier for Feature Selection
    Khodadadi, Nima
    Khodadadi, Ehsan
    Al-Tashi, Qasem
    El-Kenawy, El-Sayed M.
    Abualigah, Laith
    Abdulkadir, Said Jadid
    Alqushaibi, Alawi
    Mirjalili, Seyedali
    IEEE ACCESS, 2023, 11 : 94094 - 94115
  • [22] Data Oriented Approximate K-Nearest Neighbor Classifier for Touch Modality Recognition
    Younes, Hamoud
    Ibrahim, Ali
    Rizk, Mostafa
    Valle, Maurizio
    2019 15TH CONFERENCE ON PHD RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIME), 2019, : 241 - 244
  • [23] Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier
    Tahir, Muhammad Atif
    Bouridane, Ahmed
    Kurugollu, Fatih
    PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 438 - 446
  • [24] A feature space adaptive k-nearest neighbor method for industrial fault detection
    Guo X.-P.
    Xu Y.
    Li Y.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2019, 33 (02): : 453 - 461
  • [25] Hierarchical k-nearest neighbor classification using feature and observation space information
    Kubotaa, Ryosuke
    Uchino, Eiji
    Suetake, Noriaki
    IEICE ELECTRONICS EXPRESS, 2008, 5 (03) : 114 - 119
  • [26] Evaluation of k-Nearest Neighbor classifier performance for direct marketing
    Govindarajan, M.
    Chandrasekaran, R. M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (01) : 253 - 258
  • [27] A Fast k-Nearest Neighbor Classifier Using Unsupervised Clustering
    Vajda, Szilard
    Santosh, K. C.
    RECENT TRENDS IN IMAGE PROCESSING AND PATTERN RECOGNITION (RTIP2R 2016), 2017, 709 : 185 - 193
  • [28] Fuzzy parameterized fuzzy soft k-nearest neighbor classifier
    Memis, S.
    Enginoglu, S.
    Erkan, U.
    NEUROCOMPUTING, 2022, 500 (351-378) : 351 - 378
  • [29] A parameter independent fuzzy weighted k-Nearest neighbor classifier
    Biswas, Nimagna
    Chakraborty, Saurajit
    Mullick, Sankha Subhra
    Das, Swagatam
    PATTERN RECOGNITION LETTERS, 2018, 101 : 80 - 87
  • [30] An Algorithm of Incremental Bayesian Classifier Based on K-Nearest Neighbor
    Wang, Dong
    Xiong, Shi-huan
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 1455 - 1459