A Deep Learning Network with Aggregation Residual Transformation for Human Activity Recognition Using Inertial and Stretch Sensors

被引:6
|
作者
Mekruksavanich, Sakorn [1 ]
Jitpattanakul, Anuchit [2 ,3 ]
机构
[1] Univ Phayao, Sch Informat & Commun Technol, Dept Comp Engn, Phayao 56000, Thailand
[2] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[3] King Mongkuts Univ Technol North Bangkok, Sci & Technol Res Inst, Intelligent & Nonlinear Dynam Innovat Res Ctr, Bangkok 10800, Thailand
关键词
human activity recognition; inertial sensor; stretch sensor; low-power wearable device; deep residual learning network; ACCELEROMETER; ALGORITHMS; FUSION;
D O I
10.3390/computers12070141
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the rise of artificial intelligence, sensor-based human activity recognition (S-HAR) is increasingly being employed in healthcare monitoring for the elderly, fitness tracking, and patient rehabilitation using smart devices. Inertial sensors have been commonly used for S-HAR, but wearable devices have been demanding more comfort and flexibility in recent years. Consequently, there has been an effort to incorporate stretch sensors into S-HAR with the advancement of flexible electronics technology. This paper presents a deep learning network model, utilizing aggregation residual transformation, that can efficiently extract spatial-temporal features and perform activity classification. The efficacy of the suggested model was assessed using the w-HAR dataset, which included both inertial and stretch sensor data. This dataset was used to train and test five fundamental deep learning models (CNN, LSTM, BiLSTM, GRU, and BiGRU), along with the proposed model. The primary objective of the w-HAR investigations was to determine the feasibility of utilizing stretch sensors for recognizing human actions. Additionally, this study aimed to explore the effectiveness of combining data from both inertial and stretch sensors in S-HAR. The results clearly demonstrate the effectiveness of the proposed approach in enhancing HAR using inertial and stretch sensors. The deep learning model we presented achieved an impressive accuracy of 97.68%. Notably, our method outperformed existing approaches and demonstrated excellent generalization capabilities.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Sensors-Based Human Activity Recognition Using Hybrid Features and Deep Capsule Network
    Ghafoor, Hafiz Yasir
    Jahangir, Rashid
    Jaffar, Arfan
    Alroobaea, Roobaea
    Saidani, Oumaima
    Alhayan, Fatimah
    IEEE SENSORS JOURNAL, 2024, 24 (14) : 23129 - 23139
  • [42] Human Activity Recognition via Wi-Fi and Inertial Sensors With Machine Learning
    Guo, Wei
    Yamagishi, Shunsei
    Jing, Lei
    IEEE ACCESS, 2024, 12 : 18821 - 18836
  • [43] Multi-ResAtt: Multilevel Residual Network With Attention for Human Activity Recognition Using Wearable Sensors
    Al-qaness, Mohammed A. A.
    Dahou, Abdelghani
    Abd Elaziz, Mohamed
    Helmi, A. M.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (01) : 144 - 152
  • [44] EnsemConvNet: a deep learning approach for human activity recognition using smartphone sensors for healthcare applications
    Mukherjee, Debadyuti
    Mondal, Riktim
    Singh, Pawan Kumar
    Sarkar, Ram
    Bhattacharjee, Debotosh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (41-42) : 31663 - 31690
  • [45] EnsemConvNet: a deep learning approach for human activity recognition using smartphone sensors for healthcare applications
    Debadyuti Mukherjee
    Riktim Mondal
    Pawan Kumar Singh
    Ram Sarkar
    Debotosh Bhattacharjee
    Multimedia Tools and Applications, 2020, 79 : 31663 - 31690
  • [46] HDL: Hierarchical Deep Learning Model based Human Activity Recognition using Smartphone Sensors
    Su, Tongtong
    Sun, Huazhi
    Ma, Chunmei
    Jiang, Lifen
    Xu, Tongtong
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [47] Activity Recognition using Head Worn Inertial Sensors
    Wolff, Johann P.
    Gruetzmacher, Florian
    Wellnitz, Arne
    Haubelt, Christian
    5TH INTERNATIONAL WORKSHOP ON SENSOR-BASED ACTIVITY RECOGNITION AND INTERACTION (IWOAR 2018), 2018,
  • [48] Activity Recognition using Inertial Sensors and a 2-D Convolutional Neural Network
    Wagner, Daniel
    Kalischewski, Kathrin
    Velten, Joerg
    Kummert, Anton
    2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS), 2017,
  • [49] Human Activity Recognition in Videos Using Deep Learning
    Kumar, Mohit
    Rana, Adarsh
    Ankita
    Yadav, Arun Kumar
    Yadav, Divakar
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, ICSOFTCOMP 2022, 2023, 1788 : 288 - 299
  • [50] Human activity recognition using deep electroencephalography learning
    Salehzadeh, Amirsaleh
    Calitz, Andre P.
    Greyling, Jean
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 62