Large-scale prediction of stream water quality using an interpretable deep learning approach

被引:20
|
作者
Zheng, Hang [1 ]
Liu, Yueyi [1 ]
Wan, Wenhua [1 ]
Zhao, Jianshi [2 ]
Xie, Guanti [3 ]
机构
[1] Dongguan Univ Technol, Sch Environm & Civil Engn, Dongguan 523808, Peoples R China
[2] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China
[3] Dongguan Shigu Sewage Treatment Co Ltd, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
Water quality; Deep learning; Prediction; Interpretable; Large scale; LAND-USE; SPATIOTEMPORAL VARIABILITY; RIVER-BASIN; MODEL; REGRESSION; TURBIDITY; COVER; TIME; FLOW;
D O I
10.1016/j.jenvman.2023.117309
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Deep learning methods, which have strong capabilities for mapping highly nonlinear relationships with acceptable calculation speed, have been increasingly applied for water quality prediction in recent studies. However, it is argued that the practicality of deep learning methods is limited due to the lack of physical mechanics to explain the prediction results of water quality changes. A knowledge gap exists in rationalizing the deep learning results for water quality predictions. To address this gap, an interpretable deep learning framework was established to predict the spatiotemporal variations of water quality parameters in a large spatial region. Mereological, land-use, and socioeconomic variables were adopted to predict the daily variations of stream water quality parameters across 138 sub-catchments in a total of over 575,250 km2 in southern China. The coefficients of determination of chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) predictions were over 0.80, suggesting a satisfactory prediction performance. The model performance in terms of prediction accuracy could be improved by involving land-use and socioeconomic predictors in addition to hydrological variables. The SHapley Additive exPlanations method used in this study was demonstrated to be effective for interpreting the prediction results by identifying the significant variables and reasoning their influencing directions on the variation of each water quality parameter. The air temperature, proportion of forest area, grain production, population density, and proportion of urban area in each sub-catchment as well as the accumulated rainfall within the previous 3 days were identified as the most significant variables affecting the variations of dissolved oxygen, COD, ammoniacal nitrogen(NH3-N), TN, TP, and turbidity in the stream water in the case area, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Large-scale transport simulation by deep learning
    Pan, Jie
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (05): : 306 - 306
  • [32] The three pillars of large-scale deep learning
    Hoefler, Torsten
    2021 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2021, : 908 - 908
  • [33] Large-scale Pollen Recognition with Deep Learning
    de Geus, Andre R.
    Barcelos, Celia A. Z.
    Batista, Marcos A.
    da Silva, Sergio F.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [34] Learning Deep Representation with Large-scale Attributes
    Ouyang, Wanli
    Li, Hongyang
    Zeng, Xingyu
    Wang, Xiaogang
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1895 - 1903
  • [35] Deep Learning on Large-scale Muticore Clusters
    Sakiyama, Kazumasa
    Kato, Shinpei
    Ishikawa, Yutaka
    Hori, Atsushi
    Monrroy, Abraham
    2018 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2018), 2018, : 314 - 321
  • [36] Beamforming Design for Large-Scale Antenna Arrays Using Deep Learning
    Lin, Tian
    Zhu, Yu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (01) : 103 - 107
  • [37] Planning Large-scale Object Rearrangement Using Deep Reinforcement Learning
    Ghosh, Sourav
    Das, Dipanjan
    Chakraborty, Abhishek
    Agarwal, Marichi
    Bhowmick, Brojeshwar
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [38] Large-Scale and Adaptive Service Composition Using Deep Reinforcement Learning
    Wang, Hongbing
    Gu, Mingzhu
    Yu, Qi
    Fei, Huanhuan
    Li, Jiajie
    Tao, Yong
    SERVICE-ORIENTED COMPUTING, ICSOC 2017, 2017, 10601 : 383 - 391
  • [39] Ensemble Learning for Large-Scale Workload Prediction
    Singh, Nidhi
    Rao, Shrisha
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2014, 2 (02) : 149 - 165
  • [40] Large-scale flash flood warning in China using deep learning
    Zhao, Gang
    Liu, Ronghua
    Yang, Mingxiang
    Tu, Tongbi
    Ma, Meihong
    Hong, Yang
    Wang, Xiekang
    JOURNAL OF HYDROLOGY, 2022, 604