Coupled Process/Device Modeling and Point Defect Engineering of Cu(In,Ga)Se2 Solar Cells

被引:4
|
作者
Xiang, Xiaofeng [1 ]
Sommer, David E. [2 ]
Gehrke, Aaron [3 ]
Dunham, Scott T. [2 ]
机构
[1] Univ Washington, Mol Engn & Sci Inst, Seattle, WA 98195 USA
[2] Univ Washington, Dept Elect & Comp Engn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2024年 / 14卷 / 03期
关键词
Copper; Selenium; Photovoltaic cells; Discrete Fourier transforms; Chemicals; Charge carrier processes; Mathematical models; Lifetime; point defect; process simulation; Shockley-Read-Hall (SRH) recombination; technology computer aided design (TCAD) model; OPTICAL-PROPERTIES; HIGH-EFFICIENCY; THIN-FILMS; CIGS; CHALCOPYRITES; SCATTERING; IMPACT;
D O I
10.1109/JPHOTOV.2024.3366652
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Point defects directly impact solar cell device performance by limiting the carrier lifetime. In this work, density functional theory calculations are first used to determine the formation energy and diffusion energy barriers of dominant defects in Cu(In,Ga)Se-2. Next, continuum reaction-diffusion models are developed to analyze the redistribution of defects during manufacturing processes. We estimate defect capture cross sections using a first-principles-based approach. These cross sections are combined with our calculated defect profiles and trap energy levels to parameterize a Shockley-Read-Hall recombination model, which we implement into a device simulator to predict carrier lifetimes and device performance. In that way, a predictive technology computer aided design model is built to predict and optimize the performance of Cu(In,Ga)Se-2 solar cells.
引用
收藏
页码:422 / 432
页数:11
相关论文
共 50 条
  • [21] Phototransistor effects in Cu(In,Ga)Se2 solar cells
    Ott, Thomas
    Walter, Thomas
    Unold, Thomas
    THIN SOLID FILMS, 2013, 535 : 275 - 278
  • [22] Radiation response of Cu(In,Ga)Se2 solar cells
    Jasenek, A
    Rau, U
    Weinert, K
    Schock, HW
    Werner, JH
    PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS A-C, 2003, : 593 - 598
  • [23] Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers
    Minemoto, T
    Hashimoto, Y
    Satoh, T
    Negami, T
    Takakura, H
    Hamakawa, Y
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (12) : 8327 - 8330
  • [24] Analysis of (Ag,Cu)( In,Ga)Se2 solar cells deposited by a hybrid process
    Littlel, S.
    Ranjan, V.
    Collins, R. W.
    Marsillac, S.
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, : 884 - 886
  • [25] Complex defect behavior in Cu(In,Ga)Se2 solar cells with different gallium content
    Mertens, V
    Parisi, J
    Kniese, R
    Köntges, M
    Reineke-Koch, R
    Thin-Film Compound Semiconductor Photovoltaics, 2005, 865 : 231 - 236
  • [26] Influence of Ga/(Ga plus In) grading on deep-defect states of Cu(In, Ga)Se2 solar cells
    Kotipalli, Ratan
    Vermang, Bart
    Fjallstrom, Viktor
    Edoff, Marika
    Delamare, Romain
    Flandre, Denis
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2015, 9 (03): : 157 - 160
  • [27] Device physics of Cu(In,Ga)Se2 solar cells for long-term operation
    Nishinaga, J.
    Shibata, H.
    PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES VI, 2017, 10099
  • [28] Effects of Cu(In,Ga)3Se5 defect phase layer in Cu(In,Ga)Se2 thin film solar cells
    Namnuan, B.
    Amornkitbamrung, V
    Chatraphorn, S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 800 (305-313) : 305 - 313
  • [29] Engineering of Sodium Supply into Cu(In, Ga)Se2 Thin-Film Solar Cells
    Cho, Dae-Hyung
    Lee, Woo-Jung
    Wi, Jae-Hyung
    Yu, Hye-Jung
    Han, Won Seok
    Chung, Yong-Duck
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2018, 13 (12) : 1753 - 1757
  • [30] Photoluminescence of Cu(In,Ga)Se2 in the Solar Cell Preparation Process
    Shirakata, Sho
    Yudate, Shinji
    Honda, Jyunji
    Iwado, Naoki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (05)