Poverty Estimation Using a ConvLSTM-Based Model With Multisource Remote Sensing Data: A Case Study in Nigeria

被引:0
|
作者
Tang, Jie [1 ]
Zhao, Xizhi [1 ]
Zhang, Fuhao [1 ]
Qiu, Agen [1 ]
Tao, Kunwang [1 ]
机构
[1] Chinese Acad Surveying & Mapping, Geospatial Big Data Applicat Res Ctr, Beijing 100830, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Economics; Data models; Surveys; Data mining; Indexes; Remote sensing; Convolutional long short-term memory (convLSTM); Nigeria; nighttime light (NTL); poverty; time-series features; NETWORKS; IMAGERY; AFRICA; GROWTH; LEVEL; AREAS;
D O I
10.1109/JSTARS.2024.3353754
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Poverty is a global challenge, the effects of which are felt on the individual to national scale. To develop effective support policies to reduce poverty, local governments require precise poverty distribution data, which are lacking in many areas. In this study, we proposed a model to estimate poverty on a spatial scale of 10 x 10 km by combining features extracted from multiple data sources, including nighttime light remote sensing data, normalized difference vegetation index, surface reflectance, land cover type, and slope data, and applied the model to Nigeria. Considering that the trends of environmental factors contain valid information related to poverty, time-series features were extracted through convolutional long short-term memory and used for the assessment. The poverty level is represented by the wealth index derived from the Demographic and Health Survey Program. The model exhibited good ability to estimate poverty, with an R-2 of 0.73 between the actual and estimated wealth index in Nigeria in 2018. Applying the proposed model to poverty estimation for Nigeria in 2021 yielded an R-2 value of 0.69, indicating good generalization ability. To further validate model reliability, we compared the assessment results with high-resolution satellite imagery and a state-level multidimensional poverty index. We also investigated the impact of incorporating time-series features on the accuracy of poverty assessment. Results showed that the addition of time-series features increased the accuracy of poverty estimation from 0.64 to 0.73. The proposed method has valuable applications for estimating poverty at the grid scale in countries without such data.
引用
收藏
页码:3516 / 3529
页数:14
相关论文
共 50 条
  • [31] Evapotranspiration estimation using remote sensing data
    Olioso, A
    Jacob, F
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2002, (01): : 62 - 67
  • [32] Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River
    Huang, Qi
    Long, Di
    Du, Mingda
    Zeng, Chao
    Qiao, Gang
    Li, Xingdong
    Hou, Aizhong
    Hong, Yang
    REMOTE SENSING OF ENVIRONMENT, 2018, 219 : 115 - 134
  • [33] Assimilation of Remote Sensing Data into Crop Growth Model for Yield Estimation: A Case Study from India
    Murali Krishna Gumma
    M. D. M. Kadiyala
    Pranay Panjala
    Shibendu S. Ray
    Venkata Radha Akuraju
    Sunil Dubey
    Andrew P. Smith
    Rajesh Das
    Anthony M. Whitbread
    Journal of the Indian Society of Remote Sensing, 2022, 50 : 257 - 270
  • [34] Mapping Global Bamboo Forest Distribution Using Multisource Remote Sensing Data
    Du, Huaqiang
    Mao, Fangjie
    Li, Xuejian
    Zhou, Guomo
    Xu, Xiaojun
    Han, Ning
    Sun, Shaobo
    Gao, Guolong
    Cui, Lu
    Li, Yangguang
    Zhu, Dien
    Liu, Yuli
    Chen, Liang
    Fan, Weiliang
    Li, Pingheng
    Shi, Yongjun
    Zhou, Yufeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (05) : 1458 - 1471
  • [35] Assimilation of Remote Sensing Data into Crop Growth Model for Yield Estimation: A Case Study from India
    Gumma, Murali Krishna
    Kadiyala, M. D. M.
    Panjala, Pranay
    Ray, Shibendu S.
    Akuraju, Venkata Radha
    Dubey, Sunil
    Smith, Andrew P.
    Das, Rajesh
    Whitbread, Anthony M.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (02) : 257 - 270
  • [36] Tree Species Classification of Forest Stands Using Multisource Remote Sensing Data
    Wan, Haoming
    Tang, Yunwei
    Jing, Linhai
    Li, Hui
    Qiu, Fang
    Wu, Wenjin
    REMOTE SENSING, 2021, 13 (01) : 1 - 24
  • [37] Crop monitoring and biomass estimation based on downscaled remote sensing data in AquaCrop model (case study: Qazvin Plain, Iran)
    Bahmanabadi, Bahareh
    Kaviani, Abbas
    Etedali, Hadi Ramezani
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (11)
  • [38] Crop monitoring and biomass estimation based on downscaled remote sensing data in AquaCrop model (case study: Qazvin Plain, Iran)
    Bahareh Bahmanabadi
    Abbas Kaviani
    Hadi Ramezani Etedali
    Environmental Monitoring and Assessment, 2023, 195
  • [39] MULTISOURCE REMOTE SENSING DATA CLASSIFICATION BASED ON A DUAL ATTENTION FUSION NETWORK
    Wang, Junjie
    Li, Wei
    Zhang, Mengmeng
    Gao, Yunhao
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [40] Estimation of Aboveground Carbon Density of Forests Using Deep Learning and Multisource Remote Sensing
    Zhang, Fanyi
    Tian, Xin
    Zhang, Haibo
    Jiang, Mi
    REMOTE SENSING, 2022, 14 (13)