Graph-Diffusion-Based Domain-Invariant Representation Learning for Cross-Domain Facial Expression Recognition

被引:1
|
作者
Wang, Run [1 ]
Song, Peng [1 ]
Zheng, Wenming [2 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
[2] Southeast Univ, Key Lab Child Dev & Learning Sci, Minist Educ, Nanjing 210096, Peoples R China
关键词
Affinity graph diffusion; domain shift; facial expression recognition; graph learning; matrix factorization; MATRIX FACTORIZATION; FACE;
D O I
10.1109/TCSS.2024.3355113
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The precondition that most of the existing facial expression recognition (FER) algorithms have succeeded lies in that the training (source) and test (target) samples are independent of each other and identically distributed. However, it is too strict to satisfy this precondition in the real-world. To this end, we propose a novel graph-diffusion-based domain-invariant representation learning (GDRL) model for the cross-domain FER scenario where there exist distribution shifts between various domains. Specifically, a low-dimensional space mapping strategy is first adopted to diminish the domain mismatch. Then, by skillfully combining the local graph embedding and affinity graph diffusion, the local geometric structures can be effectively modeled and the deeper higher-order relationships of samples from various domains can be captured. In addition, in order to better guide the transfer process and learn a more discriminative and invariant representation, we take into account the label consistency. Experimental results on four laboratory-controlled databases and two in-the-wild databases demonstrate that our proposed model can yield better recognition performance compared with state-of-the-art domain adaptation methods.
引用
收藏
页码:4163 / 4174
页数:12
相关论文
共 50 条
  • [31] CentriForce: Multiple-Domain Adaptation for Domain-Invariant Speaker Representation Learning
    Wei, Yuheng
    Du, Junzhao
    Liu, Hui
    Zhang, Zhipeng
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 807 - 811
  • [32] Explicitly modeling relationships between domain-specific and domain-invariant interests for cross-domain recommendation
    Zang, Tianzi
    Zhu, Yanmin
    Zhang, Ruohan
    Zhu, Jing
    Tang, Feilong
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2024, 27 (06):
  • [33] Cross-Domain Color Facial Expression Recognition Using Transductive Transfer Subspace Learning
    Zheng, Wenming
    Zong, Yuan
    Zhou, Xiaoyan
    Xin, Minghai
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2018, 9 (01) : 21 - 37
  • [34] DOMAIN-INVARIANT REPRESENTATION LEARNING FROM EEG WITH PRIVATE ENCODERS
    Bethge, David
    Hallgarten, Philipp
    Grosse-Puppendahl, Tobias
    Kari, Mohamed
    Mikut, Ralf
    Schmidt, Albrecht
    Oezdenizci, Ozan
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1236 - 1240
  • [35] Cross-Domain Expression Recognition Based on Sparse Coding and Transfer Learning
    Yang, Yong
    Zhang, Weiyi
    Huang, Yong
    MATERIALS SCIENCE, ENERGY TECHNOLOGY, AND POWER ENGINEERING I, 2017, 1839
  • [36] DIRL: Domain-Invariant Representation Learning for Generalizable Semantic Segmentation
    Xu, Qi
    Yao, Liang
    Jiang, Zhengkai
    Jiang, Guannan
    Chu, Wenqing
    Han, Wenhui
    Zhang, Wei
    Wang, Chengjie
    Tai, Ying
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2884 - 2892
  • [37] Single-Source Cross-Domain Bearing Fault Diagnosis via Multipseudo-Domain-Augmented Adversarial Domain-Invariant Learning
    Bi, Yuanguo
    Fu, Rao
    Jiang, Cunyu
    Han, Guangjie
    Yin, Zhenyu
    Zhao, Liang
    Li, Qihao
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (19): : 31521 - 31533
  • [38] Cross-Domain Facial Expression Recognition through Reliable Global-Local Representation Learning and Dynamic Label Weighting
    Gao, Yuefang
    Cai, Yiteng
    Bi, Xuanming
    Li, Bizheng
    Li, Shunpeng
    Zheng, Weiping
    ELECTRONICS, 2023, 12 (21)
  • [39] Learning Domain-Invariant Discriminative Features for Heterogeneous Face Recognition
    Yang, Shanmin
    Fu, Keren
    Yang, Xiao
    Lin, Ye
    Zhang, Jianwei
    Peng, Cheng
    IEEE ACCESS, 2020, 8 : 209790 - 209801
  • [40] Learning domain-invariant representation for generalizing face forgery detection
    Wu, Yuanlu
    Wo, Yan
    Li, Caiyu
    Han, Guoqiang
    COMPUTERS & SECURITY, 2023, 130