An Unsupervised Deep Learning Framework for Anomaly Detection

被引:0
|
作者
Kuo, Che-Wei [1 ]
Ying, Josh Jia-Ching [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Management Informat Syst, Taichung, Taiwan
关键词
Deep learning; Anomaly detection; Temporal convolution network; TIME;
D O I
10.1007/978-981-99-5834-4_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, with the evolution of technology and hardware, people can per-form anomaly detection on machines by collecting immediate time series data, thereby realizing the vision of an unmanned chemical factory. However, the data is often collected from multiple sensors, and multivariate time series anomaly detection is a difficult and complex problem because of the different scales and the unclear interaction of each feature. In addition, there usually exist noises in the data, and those make it difficult to predict the trend of the data. Moreover, practically, it's hard to collect abnormal data, thus the imbalance is an important issue. Recently, with the rapid development of data science, unsupervised methods based on deep learning manner have gradually dominated the field of multivariate time series anomaly detection. In this paper, we propose a 3D-causal Temporal Convolutional Network based framework, namely TCN3DPredictor, to detect anomaly signals from sensors data. Our proposed TCN3DPredictor modifies multi-scale convolutional recurrent encoder-decoder by 3D-causal Temporal Convolutional Network which can learn the interaction and temporal correlation between features and even predict the next data. Based on the results of 3D-causal Temporal Convolutional Network, a new breed of statistical method is proposed in our proposed TCN3DPredictor to measure the anomaly score precisely. Through a series of experiments using dataset crawled from a computer numerical control (CNC) metal cutting machine tool in a precision machinery factory, we have validated the proposed TCN3DPredictor and shown that it has excellent effectiveness compared with state-of-the-art anomaly prediction methods under various conditions.
引用
收藏
页码:284 / 295
页数:12
相关论文
共 50 条
  • [41] An unsupervised anomaly detection patterns learning algorithm
    Yang, YJ
    Ma, FY
    2003 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY, VOL 1 AND 2, PROCEEDINGS, 2003, : 400 - 402
  • [42] Unsupervised Learning for Anomaly Detection of Electric Motors
    Son, Jonghwan
    Kim, Chayoung
    Jeong, Minjoong
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2022, 23 (04) : 421 - 427
  • [43] A Generic Machine Learning Framework for Fully-Unsupervised Anomaly Detection with Contaminated Data
    Ulmer, Markus
    Zgraggen, Jannik
    Huber, Lilach Goren
    INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT, 2024, 15 (01)
  • [44] Deep Self-Representation Learning Framework for Hyperspectral Anomaly Detection
    Cheng, Xi
    Zhang, Min
    Lin, Sheng
    Li, Yunsong
    Wang, Hai
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 16
  • [45] A Scalable and Generalised Deep Learning Framework for Anomaly Detection in Surveillance Videos
    Jebur, Sabah Abdulazeez
    Alzubaidi, Laith
    Saihood, Ahmed
    Hussein, Khalid A.
    Hoomod, Haider Kadhim
    Gu, Yuantong
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2025, 2025 (01)
  • [46] ENAD: An Ensemble Framework for Unsupervised Network Anomaly Detection
    Liao, Jingyi
    Teo, Sin G.
    Kundu, Partha Pratim
    Tram Truong-Huu
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (IEEE CSR), 2021, : 81 - 88
  • [47] A Deep Learning Anomaly Detection Framework for Satellite Telemetry with Fake Anomalies
    Wang, Yakun
    Gong, Jianglei
    Zhang, Jie
    Han, Xiaodong
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2022, 2022
  • [48] A Dynamic Deep Reinforcement Learning-Bayesian Framework for Anomaly Detection
    Watts, Jeremy
    van Wyk, Franco
    Rezaei, Shahrbanoo
    Wang, Yiyang
    Masoud, Neda
    Khojandi, Anahita
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 22884 - 22894
  • [49] A Hybrid Deep Learning-Based Unsupervised Anomaly Detection in High Dimensional Data
    Muneer, Amgad
    Taib, Shakirah Mohd
    Fati, Suliman Mohamed
    Balogun, Abdullateef O.
    Aziz, Izzatdin Abdul
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 5363 - 5381
  • [50] SUSAN: A Deep Learning based anomaly detection framework for sustainable industry
    Perales Gomez, Angel Luis
    Fernandez Maimo, Lorenzo
    Huertas Celdran, Alberto
    Garcia Clemente, Felix J.
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2023, 37