The quadratic sum problem for symplectic pairs

被引:0
|
作者
Pazzis, Clement de Seguins [1 ]
机构
[1] Univ Versailles St Quentin En Yvelines, Lab Math Versailles, 45 Ave Etats Unis, F-78035 Versailles, France
关键词
Symplectic forms; Invariant factors; Quadratic elements; Decomposition; MATRICES; PRODUCTS;
D O I
10.1016/j.laa.2023.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (b, u) be a pair consisting of a symplectic form b on a finite-dimensional vector space V over a field F, and of a b -alternating endomorphism u of V (i.e. b(x, u(x)) = 0 for all x in V ). Let p and q be arbitrary polynomials of degree 2 with coefficients in F. We characterize, in terms of the invariant factors of u, the condition that u splits into u1 + u2 for some pair (u1, u2) of b-alternating endomorphisms such that p(u1) = q(u2) = 0. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:151 / 179
页数:29
相关论文
共 50 条
  • [31] QUADRATIC RESIDUE CODES AND SYMPLECTIC GROUPS
    WARD, HN
    JOURNAL OF ALGEBRA, 1974, 29 (01) : 150 - 171
  • [32] Moser's Quadratic, Symplectic Map
    Baecker, Arnd
    Meiss, James D.
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (06): : 654 - 664
  • [33] ON QUADRATIC-INVARIANTS AND SYMPLECTIC STRUCTURE
    BORCHEV, PB
    SCOVEL, C
    BIT, 1994, 34 (03): : 337 - 345
  • [34] The Quadratic Gauss Sum Redux
    Grant, David
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (02): : 145 - 149
  • [35] A sum related to quadratic residues
    Barbara, R
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (02): : 208 - 208
  • [36] The sum of divisors of a quadratic form
    Zhao, Lilu
    ACTA ARITHMETICA, 2014, 163 (02) : 161 - 177
  • [37] A symplectic restriction problem
    Valentin Blomer
    Andrew Corbett
    Mathematische Annalen, 2022, 382 : 1323 - 1424
  • [38] On the set of discriminants of quadratic pairs
    Berhuy, G
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 188 (1-3) : 33 - 44
  • [39] Totally decomposable quadratic pairs
    Becher, Karim Johannes
    Dolphin, Andrew
    MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (1-2) : 117 - 129
  • [40] PAIRS OF QUADRATIC-FORMS
    WATERHOUSE, WC
    INVENTIONES MATHEMATICAE, 1976, 37 (02) : 157 - 164