Data-Driven Self-Triggered Control via Trajectory Prediction

被引:24
|
作者
Liu, Wenjie [1 ,2 ,3 ]
Sun, Jian [1 ,2 ,3 ]
Wang, Gang [1 ,2 ,3 ]
Bullo, Francesco [4 ,5 ]
Chen, Jie [1 ,2 ,6 ]
机构
[1] Beijing Inst Technol, Natl Key Lab Autonomous Intelligent Unmanned Syst, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401120, Peoples R China
[4] UC Santa Barbara, Mech Engn Dept, Santa Barbara, CA 93106 USA
[5] UC Santa Barbara, Ctr Control Dynam Syst & Computat, Santa Barbara, CA 93106 USA
[6] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Data-driven control; data-driven model predictive control (MPC); predicted control; self-triggered control; SYSTEMS;
D O I
10.1109/TAC.2023.3244116
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Self-triggered control, a well-documented technique for reducing the communication overhead while ensuring desired system performance, is gaining increasing popularity. However, a majority of existing self-triggered control methods require explicit system models. An end-to-end control paradigm known as data-driven control designs control laws directly from data and offers a competing alternative to the routine system identification-then-control strategy. In this context, the present article puts forth data-driven self-triggered control schemes for unknown linear systems using input-output data collected offline. Specifically, a data-driven model predictive control (MPC) scheme is proposed, which computes a sequence of control inputs while generating a predicted system trajectory. In addition, a data-driven self-triggering mechanism is designed, which determines the next triggering time using the solution of the data-driven MPC and the newly collected measurements. Finally, both feasibility and stability are established for the proposed self-triggered controller, which are validated using a numerical example.
引用
收藏
页码:6951 / 6958
页数:8
相关论文
共 50 条
  • [21] Self-triggered and event-driven control for linear systems with stochastic delays
    Prakash, S.
    van Horssen, E. P.
    Antunes, D.
    Heemels, P. M. H.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 3023 - 3028
  • [22] A data-driven stacking fusion approach for pedestrian trajectory prediction
    Chen, Hao
    Zhang, Xi
    Yang, Wenyan
    Lin, Yiwei
    TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2023, 11 (01) : 548 - 571
  • [23] Bidirectional Data-Driven Trajectory Prediction for Intelligent Maritime Traffic
    Xiao, Ye
    Li, Xingchen
    Yao, Wen
    Chen, Jin
    Hu, Yupeng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 1773 - 1785
  • [24] A Data-Driven Methodology for Pre-Flight Trajectory Prediction
    Zazzaro, Gaetano
    Martone, Francesco
    Romano, Gianpaolo
    Vitale, Antonio
    Filippone, Edoardo
    VEHITS: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS, 2022, : 188 - 197
  • [25] A Data-Driven Model for Pedestrian Behavior Classification and Trajectory Prediction
    Papathanasopoulou, Vasileia
    Spyropoulou, Ioanna
    Perakis, Harris
    Gikas, Vassilis
    Andrikopoulou, Eleni
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 3 : 328 - 339
  • [26] New Reliability Studies of Data-Driven Aircraft Trajectory Prediction
    Hashemi, Seyed Mohammad
    Botez, Ruxandra Mihaela
    Grigorie, Teodor Lucian
    AEROSPACE, 2020, 7 (10) : 1 - 19
  • [27] An AIS Data-Driven Hybrid Approach to Ship Trajectory Prediction
    Zhu, Mingda
    Han, Peihua
    Wang, Chunlin
    Skulstad, Robert
    Zhang, Houxiang
    Li, Guoyuan
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (01): : 96 - 109
  • [28] Self-Triggered Model Predictive Control Using Optimization with Prediction Horizon One
    Kobayashi, Koichi
    Hiraishi, Kunihiko
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [29] Self-Triggered Scheduling for Boolean Control Networks
    Meng, Min
    Xiao, Gaoxi
    Cheng, Daizhan
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) : 8911 - 8921
  • [30] Self-triggered linear quadratic networked control
    Souza, M.
    Deaecto, G. S.
    Geromel, J. C.
    Daafouz, J.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2014, 35 (05): : 524 - 538