Machine learning-based classification analysis of knowledge worker mental stress

被引:0
|
作者
Kim, Hyunsuk [1 ]
Kim, Minjung [1 ]
Park, Kyounghyun [1 ]
Kim, Jungsook [1 ]
Yoon, Daesub [1 ]
Kim, Woojin [1 ]
Park, Cheong Hee [2 ]
机构
[1] Elect & Telecommun Res Inst, Mobil UX Res Sect, Daejeon, South Korea
[2] Chungnam Natl Univ, Div Comp Convergence, Daejeon, South Korea
关键词
heart rate; machine learning; mental stress; knowledge worker; photoplethysmography; pulse rate variability;
D O I
10.3389/fpubh.2023.1302794
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The aim of this study is to analyze the performance of classifying stress and non-stress by measuring biosignal data using a wearable watch without interfering with work activities at work. An experiment is designed where participants wear a Galaxy Watch3 to measure HR and photoplethysmography data while performing stress-inducing and relaxation tasks. The classification model was constructed using k-NN, SVM, DT, LR, RF, and MLP classifiers. The performance of each classifier was evaluated using LOSO-CV as a verification method. When the top 9 features, including the average and minimum value of HR, average of NNI, SDNN, vLF, HF, LF, LF/HF ratio, and total power, were used in the classification model, it showed the best performance with an accuracy of 0.817 and an F1 score of 0.801. This study also finds that it is necessary to measure physiological data for more than 2 or 3 min to accurately distinguish stress states.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Machine learning-based radar waveform classification for cognitive EW
    Orduyilmaz, Adnan
    Yar, Ersin
    Kocamis, Mehmet Burak
    Serin, Mahmut
    Efe, Murat
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (08) : 1653 - 1662
  • [42] Machine Learning-Based Quantification and Classification of Fibroblasts in Gastrointestinal Cancer
    Zhang, Z.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E668 - E669
  • [43] Machine learning-based approach for zircon classification and genesis determination
    Zhu Z.
    Zhou F.
    Wang Y.
    Zhou T.
    Hou Z.
    Qiu K.
    Earth Science Frontiers, 2022, 29 (05) : 464 - 475
  • [44] Machine Learning-Based Tomato Fruit Shape Classification System
    Vazquez, Dana V.
    Spetale, Flavio E.
    Nankar, Amol N.
    Grozeva, Stanislava
    Rodriguez, Gustavo R.
    PLANTS-BASEL, 2024, 13 (17):
  • [45] Machine learning-based classification of time series of chaotic systems
    Uzun, Suleyman
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (03): : 493 - 503
  • [46] An Analysis of Machine Learning-Based Semantic Matchmaking
    Karabulut, Erkan
    Sofia, Rute C. C.
    IEEE ACCESS, 2023, 11 : 27829 - 27842
  • [47] Machine learning-based classification of time series of chaotic systems
    Süleyman Uzun
    The European Physical Journal Special Topics, 2022, 231 : 493 - 503
  • [48] Bull Sperm Tracking and Machine Learning-Based Motility Classification
    Hidayatullah, Priyanto
    Mengko, Tati L. E. R.
    Munir, Rinaldi
    Barlian, Anggraini
    IEEE ACCESS, 2021, 9 : 61159 - 61170
  • [49] A machine learning-based image classification of silicon solar cells
    Verma, H.
    Siruvuri, S. D. V. S. S. Varma
    Budarapu, P. R.
    INTERNATIONAL JOURNAL OF HYDROMECHATRONICS, 2024, 7 (01) : 49 - 66
  • [50] A machine learning-based classification approach for phase diagram prediction
    Deffrennes, Guillaume
    Terayama, Kei
    Abe, Taichi
    Tamura, Ryo
    MATERIALS & DESIGN, 2022, 215