CRISPR/Cas9 Editing Sites Identification and Multi-Elements Association Analysis in Camellia sinensis

被引:1
|
作者
Li, Haozhen
Song, Kangkang
Li, Bin
Zhang, Xiaohua
Wang, Di
Dong, Shaolin
Yang, Long [1 ]
机构
[1] Shandong Agr Univ, Coll Plant Protect, Tai An 271018, Peoples R China
关键词
Camellia sinensis; CRISPR/Cas9; G-quadruplexes; SSRs; GC content; SEQUENCE REPEAT MARKERS; G-QUADRUPLEXES; SSR MARKERS; GENOME; PLANTS; DIVERSITY; FEATURES;
D O I
10.3390/ijms242015317
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR/Cas9 is an efficient genome-editing tool, and the identification of editing sites and potential influences in the Camellia sinensis genome have not been investigated. In this study, bioinformatics methods were used to characterise the Camellia sinensis genome including editing sites, simple sequence repeats (SSRs), G-quadruplexes (GQ), gene density, and their relationships. A total of 248,134,838 potential editing sites were identified in the genome, and five PAM types, AGG, TGG, CGG, GGG, and NGG, were observed, of which 66,665,912 were found to be specific, and they were present in all structural elements of the genes. The characteristic region of high GC content, GQ density, and PAM density in contrast to low gene density and SSR density was identified in the chromosomes in the joint analysis, and it was associated with secondary metabolites and amino acid biosynthesis pathways. CRISPR/Cas9, as a technology to drive crop improvement, with the identified editing sites and effector elements, provides valuable tools for functional studies and molecular breeding in Camellia sinensis.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A glance at genome editing with CRISPR–Cas9 technology
    Antara Barman
    Bornali Deb
    Supriyo Chakraborty
    Current Genetics, 2020, 66 : 447 - 462
  • [32] Translating CRISPR/Cas9 genome editing into therapeutics
    Barnes, T. M.
    HUMAN GENE THERAPY, 2016, 27 (11) : A140 - A141
  • [33] Editing streptomycete genomes in the CRISPR/Cas9 age
    Alberti, Fabrizio
    Corre, Christophe
    NATURAL PRODUCT REPORTS, 2019, 36 (09) : 1237 - 1248
  • [34] Efficient Mitochondrial Genome Editing by CRISPR/Cas9
    Jo, Areum
    Ham, Sangwoo
    Lee, Gum Hwa
    Lee, Yun-Il
    Kim, SangSeong
    Lee, Yun-Song
    Shin, Joo-Ho
    Lee, Yunjong
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [35] CRISPR/Cas9: Transcending the Reality of Genome Editing
    Chira, Sergiu
    Gulei, Diana
    Hajitou, Amin
    Zimta, Alina-Andreea
    Cordelier, Pierre
    Berindan-Neagoe, Ioana
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2017, 7 : 211 - 222
  • [36] CRISPR/Cas9 editing of carotenoid genes in tomato
    D'Ambrosio, Caterina
    Stigliani, Adriana Lucia
    Giorio, Giovanni
    TRANSGENIC RESEARCH, 2018, 27 (04) : 367 - 378
  • [37] Delivery of CRISPR/Cas9 for therapeutic genome editing
    Xu, Xiaojie
    Wan, Tao
    Xin, Huhu
    Li, Da
    Pan, Hongming
    Wu, Jun
    Ping, Yuan
    JOURNAL OF GENE MEDICINE, 2019, 21 (07):
  • [38] Genome editing with AAV using CRISPR/Cas9
    Wilson, J. M.
    HUMAN GENE THERAPY, 2016, 27 (11) : A18 - A18
  • [39] GENE EDITING IN CHONDROCYTES USING CRISPR/CAS9
    Gibson, G.
    Yang, M.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S2 - S3
  • [40] Spatiotemporal control of CRISPR/Cas9 gene editing
    Zhuo, Chenya
    Zhang, Jiabin
    Lee, Jung-Hwan
    Jiao, Ju
    Cheng, Du
    Liu, Li
    Kim, Hae-Won
    Tao, Yu
    Li, Mingqiang
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2021, 6 (01)