Molecular Mechanism of Qingzaojiufei Decoction in the Treatment of Pulmonary Fibrosis based on Network Pharmacology and Molecular Docking

被引:0
|
作者
Zhao, Yilong [1 ]
Liu, Bohao [1 ]
Li, Yixing [1 ]
Chen, Zhe [1 ]
Zhu, Xingzhuo [1 ]
Tao, Runyi [1 ]
Wang, Zhiyu [1 ]
Wang, Hongyi [1 ]
Zhang, Yanpeng [1 ]
Yan, Shuguang [2 ]
Gong, Qiuyu [1 ]
Zhang, Guangjian [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Thorac Surg, Affiliated Hosp 1, Xian 710061, Shaanxi, Peoples R China
[2] Shaanxi Univ Chinese Med, Coll Basic Med, Century Ave, Xianyang 712046, Peoples R China
关键词
Qingzaojiufei decoction; pulmonary fibrosis; network pharmacology; molecular docking; TCMSP; protein-protein interaction; MESENCHYMAL TRANSITION; HIF-1-ALPHA; PATHWAYS; PARAQUAT; CELLS; MAPK;
D O I
10.2174/1381612829666230911105931
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background: In recent years, pulmonary fibrosis (PF) has increased in incidence and prevalence. Qingzaojiufei decoction (QD) is a herbal formula that is used for the treatment of PF.Objective: In this research, network pharmacology and molecular docking methods were used to explore the major chemical components and potential mechanisms of QD in the treatment of PF.Methods: The principal components and corresponding protein targets of QD were used to screen on Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID) and high-throughput experiment-and reference-guided database (HERB), Cytoscape 3.7.2 was used to construct the drug-component-target network. PF targets were collected by GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. The protein-protein interaction (PPI) network was constructed by importing compound-disease intersection targets into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and visualized by Cytoscape3.7.2. We further performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the intersecting targets. In the last, we validated the core targets and active compounds by molecular docking.Results: The key compounds of quercetin, (-)-epigallocatechin-3-gallate, and kaempferol of QD were obtained. The key targets of AKT1, TNF, and IL6 of QD were obtained. The molecular docking results show that quercetin, (-)-epigallocatechin-3-gallate and kaempferol work well with AKT1, TNF and IL6.Conclusion: This research shows the multiple active components and molecular mechanism of QD in the treatment of PF and offers resources and suggestions for future studies.
引用
收藏
页码:2161 / 2176
页数:16
相关论文
共 50 条
  • [21] Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation
    Lu, Shuai
    Sun, Xibo
    Zhou, Zhongbao
    Tang, Huazhen
    Xiao, Ruixue
    Lv, Qingchen
    Wang, Bing
    Qu, Jinxiu
    Yu, Jinxuan
    Sun, Fang
    Deng, Zhuoya
    Tian, Yuying
    Li, Cong
    Yang, Zhenpeng
    Yang, Penghui
    Rao, Benqiang
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [22] Mechanism of Tingli Dazao Xiefei Decoction in the Treatment of COPD Based on Network Pharmacology and Molecular Docking Technology
    Dong YANG
    Xun ZHOU
    Medicinal Plant, 2021, 12 (06) : 20 - 23
  • [23] The mechanism study of Miao medicine Tongfengting decoction in the treatment of gout based on network pharmacology and molecular docking
    Peng, Xin
    Huang, Cong
    Zhang, Nannan
    Cao, Yuepeng
    Chen, Zhigang
    Ma, Wukai
    Liu, Zhengqi
    MEDICINE, 2022, 101 (51)
  • [24] Discussion on the molecular mechanism of Duhuo Jisheng decoction in treating osteoarthritis based on network pharmacology and molecular docking
    Yang, Liu
    Zheng, Senwang
    Hou, Ajiao
    Wang, Song
    Zhang, Jiaxu
    Yu, Huan
    Wang, Xuejiao
    Lan, Wei
    MEDICINE, 2022, 101 (42) : E31009
  • [25] Molecular mechanism of lycorine in the treatment of glioblastoma based on network pharmacology and molecular docking
    Jie Su
    Mengmeng Huo
    Fengnan Xu
    Liqiong Ding
    Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 397 : 1551 - 1559
  • [26] Molecular mechanism of lycorine in the treatment of glioblastoma based on network pharmacology and molecular docking
    Su, Jie
    Huo, Mengmeng
    Xu, Fengnan
    Ding, Liqiong
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 (03) : 1551 - 1559
  • [27] Molecular Mechanism of Yangshen Maidong Decoction in the Treatment of Chronic Heart Failure based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations
    Cheng, Wei
    Zhang, Bo-Feng
    Chen, Na
    Liu, Qun
    Ma, Xin
    Fu, Xiao
    Xu, Min
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2024, 82 (02) : 1433 - 1451
  • [28] Network Pharmacology and Molecular Docking to Explore the Mechanism of Kangxian Decoction for Epilepsy
    Wang, Weitao
    Zhang, Yongquan
    Yang, Yibing
    Gu, Lian
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [29] Molecular Mechanism of Dayuan Decoction in the Treatment of Fever Based on Network Pharmacology
    Ye, Tielin
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [30] The molecular mechanism of Ligusticum wallichii for improving idiopathic pulmonary fibrosis A network pharmacology and molecular docking study
    Wu, Xiaozheng
    Li, Wen
    Luo, Zhenliang
    Chen, Yunzhi
    MEDICINE, 2022, 101 (06)