Symmetric nonnegative matrix factorization: A systematic review

被引:9
|
作者
Chen, Wen-Sheng [1 ,2 ]
Xie, Kexin [1 ]
Liu, Rui [1 ]
Pan, Binbin [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
[2] Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
关键词
Symmetric nonnegative matrix factorization; Feature extraction; Supervised learning; COMPONENT ANALYSIS; FEATURE-EXTRACTION; GRAPH LAPLACIANS; ALGORITHM; SUBSPACE; REGULARIZATION; RECOGNITION; EIGENFACES; MODEL;
D O I
10.1016/j.neucom.2023.126721
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, symmetric non-negative matrix factorization (SNMF), a variant of non-negative matrix factorization (NMF), has emerged as a promising tool for data analysis. This paper mainly focuses on the theoretical idea, the basic model, the optimization method, and the variants of SNMF. The SNMF-related approaches can be generally classified into two main categories, Classic SNMFs and Extended SNMFs. The classic SNMFs contain Orthogonal SNMF, Sparse SNMF, Manifold structure based SNMF and Pairwise constraint based SNMF, besides, extended SNMFs include Self-supervised SNMF, MV-WSNMF and Multi-view SNMF. According to different classes of SNMFs, this review elaborates on the key concepts, characteristics, and current issues of these algorithms. The clustering performance of SNMF and its variants on three object image datasets is empirically compared. In addition, the effects of some algorithms for solving SNMF have been compared and the performance of similarity matrix construction methods is also compared. Finally, some open problems with SNMF are discussed.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Structured subspace learning-induced symmetric nonnegative matrix factorization
    Qin, Yalan
    Wu, Hanzhou
    Feng, Guorui
    SIGNAL PROCESSING, 2021, 186
  • [32] Nonnegative matrix factorization of a correlation matrix
    Sonneveld, P.
    van Kan, J. J. I. M.
    Huang, X.
    Oosterlee, C. W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 334 - 349
  • [33] NONNEGATIVE MATRIX FACTORIZATION WITH MATRIX EXPONENTIATION
    Lyu, Siwei
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2038 - 2041
  • [34] Nonnegative Matrix Factorization: When Data is not Nonnegative
    Wu, Siyuan
    Wang, Jim
    2014 7TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2014), 2014, : 227 - 231
  • [35] Nonnegative rank factorization of a nonnegative matrix A with A† A≥0
    Jain, SK
    Tynan, J
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (01): : 83 - 95
  • [36] Quantized Nonnegative Matrix Factorization
    de Frein, Ruairi
    2014 19TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2014, : 377 - 382
  • [37] Quadratic nonnegative matrix factorization
    Yang, Zhirong
    Oja, Erkki
    PATTERN RECOGNITION, 2012, 45 (04) : 1500 - 1510
  • [38] Elastic nonnegative matrix factorization
    Xiong, He
    Kong, Deguang
    PATTERN RECOGNITION, 2019, 90 : 464 - 475
  • [39] Elastic Nonnegative Matrix Factorization
    Ballen, Peter
    Guha, Sudipto
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1271 - 1278
  • [40] ON THE COMPLEXITY OF NONNEGATIVE MATRIX FACTORIZATION
    Vavasis, Stephen A.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1364 - 1377