Symmetric nonnegative matrix factorization: A systematic review

被引:9
|
作者
Chen, Wen-Sheng [1 ,2 ]
Xie, Kexin [1 ]
Liu, Rui [1 ]
Pan, Binbin [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
[2] Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
关键词
Symmetric nonnegative matrix factorization; Feature extraction; Supervised learning; COMPONENT ANALYSIS; FEATURE-EXTRACTION; GRAPH LAPLACIANS; ALGORITHM; SUBSPACE; REGULARIZATION; RECOGNITION; EIGENFACES; MODEL;
D O I
10.1016/j.neucom.2023.126721
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, symmetric non-negative matrix factorization (SNMF), a variant of non-negative matrix factorization (NMF), has emerged as a promising tool for data analysis. This paper mainly focuses on the theoretical idea, the basic model, the optimization method, and the variants of SNMF. The SNMF-related approaches can be generally classified into two main categories, Classic SNMFs and Extended SNMFs. The classic SNMFs contain Orthogonal SNMF, Sparse SNMF, Manifold structure based SNMF and Pairwise constraint based SNMF, besides, extended SNMFs include Self-supervised SNMF, MV-WSNMF and Multi-view SNMF. According to different classes of SNMFs, this review elaborates on the key concepts, characteristics, and current issues of these algorithms. The clustering performance of SNMF and its variants on three object image datasets is empirically compared. In addition, the effects of some algorithms for solving SNMF have been compared and the performance of similarity matrix construction methods is also compared. Finally, some open problems with SNMF are discussed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On reduced rank nonnegative matrix factorization for symmetric nonnegative matrices
    Catral, M
    Han, LX
    Neumann, M
    Plemmons, RJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 : 107 - 126
  • [2] RANDOMIZED ALGORITHMS FOR SYMMETRIC NONNEGATIVE MATRIX FACTORIZATION
    Hayashi, Koby
    Aksoy, Sinan g.
    Ballard, Grey
    Park, Haesun
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2025, 46 (01) : 584 - 625
  • [3] A novel initialization method for symmetric nonnegative matrix factorization
    Wu, Jian-Qiang
    Huang, Hao-Xia
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONIC INFORMATION ENGINEERING (CEIE 2016), 2016, 116 : 152 - 157
  • [4] Adaptive computation of the Symmetric Nonnegative Matrix Factorization (SymNMF)
    Favati P.
    Lotti G.
    Menchi O.
    Romani F.
    SeMA Journal, 2020, 77 (2) : 203 - 217
  • [5] Off-diagonal symmetric nonnegative matrix factorization
    Moutier, Francois
    Vandaele, Arnaud
    Gillis, Nicolas
    NUMERICAL ALGORITHMS, 2021, 88 (02) : 939 - 963
  • [6] A Collaborative Neurodynamic Approach to Symmetric Nonnegative Matrix Factorization
    Che, Hangjun
    Wang, Jun
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT II, 2018, 11302 : 453 - 462
  • [7] Self-Supervised Symmetric Nonnegative Matrix Factorization
    Jia, Yuheng
    Liu, Hui
    Hou, Junhui
    Kwong, Sam
    Zhang, Qingfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4526 - 4537
  • [8] Symmetric Nonnegative Matrix Factorization With Beta-Divergences
    Shi, Min
    Yi, Qingming
    Lv, Jun
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (08) : 539 - 542
  • [9] A Provable Splitting Approach for Symmetric Nonnegative Matrix Factorization
    Li, Xiao
    Zhu, Zhihui
    Li, Qiuwei
    Liu, Kai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 2206 - 2219
  • [10] Efficient algorithm for sparse symmetric nonnegative matrix factorization
    Belachew, Melisew Tefera
    PATTERN RECOGNITION LETTERS, 2019, 125 : 735 - 741