Machine learning-based screening for biomarkers of psoriasis and immune cell infiltration

被引:3
|
作者
Zhou, Yang [1 ]
Wang, Ziting [2 ]
Han, Lu [1 ]
Yu, Yixuan [3 ]
Guan, Ning [1 ]
Fang, Runan [1 ]
Wan, Yue [1 ]
Yang, Zeyu [1 ]
Li, Jianhong [1 ]
机构
[1] Beijing Univ Chinese Med, Dongzhimen Hosp, Beijing 100700, Peoples R China
[2] Empa Swiss Fed Labs Mat Sci & Technol, Lerchenfeldstr 5, CH-9014 St Gallen, Switzerland
[3] China Japan Friendship Hosp, Beijing 100029, Peoples R China
关键词
biomarkers; diagnosis; immune cell infiltration; machine learning; psoriasis; PATHOGENESIS;
D O I
10.1684/ejd.2023.4453
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background: Psoriasis is a chronic immune-mediated skin disease. However, the pathogenesis is not yet well established. Objectives: This study aimed to screen psoriasis biomarker genes and analyse their significance in immune cell infiltration. Materials & Methods: GSE13355 and GSE14905 datasets were downloaded from Gene Expression Omnibus (GEO) as training groups to establish the model. GSE30999 obtained from GEO was used to validate the model. Differential expression and multiple enrichment analyses were performed on 91 psoriasis samples and 171 control samples from the training group. The "LASSO" regression model and support vector machine model were used to screen and verify genes implicated in psoriasis. Genes with an area under the ROC curve >0.9 were selected as candidate biomarkers and verified in the validation group. Differential analysis of immune cell infiltration was performed on psoriasis and control samples using the "CIBERSORT" algorithm. Correlation analyses between the screened psoriasis biomarkers and 22 types of immune cell infiltration were performed. Results: In total, 101 differentially expressed genes were identified, which were mainly shown to be involved in regulating cell proliferation and immune functions. Three psoriasis biomarkers, BTC, IGFL1, and SERPINB3, were identified using two machine learning algorithms. These genes showed high diagnostic value in training and validation groups. The proportion of immune cells during immune infiltration differed between psoriasis and control samples, which was associated with the three biomarkers. Conclusion: BTC, IGFL1, and SERPINB3 are associated with the infiltration of multiple immune cells, and may therefore be used as biomarkers for psoriasis.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 50 条
  • [21] Identification Through Machine Learning of Potential Immune-Related Gene Biomarkers Associated with Immune Cell Infiltration in Myocardial Infarction
    Dong, Hao
    Le, Jia-Qian
    Chen, Gang
    Li, Ming-Jie
    LABORATORY INVESTIGATION, 2023, 103 (03) : S251 - S252
  • [22] Identification of diagnostic biomarkers and immune cell infiltration in coronary artery disease by machine learning, nomogram, and molecular docking
    Jiang, Xinyi
    Luo, Yuanxi
    Li, Zeshi
    Zhang, He
    Xu, Zhenjun
    Wang, Dongjin
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [23] Analysis and validation of diagnostic biomarkers and immune cell infiltration characteristics in pediatric sepsis by integrating bioinformatics and machine learning
    Wen-Yuan Zhang
    Zhong-Hua Chen
    Xiao-Xia An
    Hui Li
    Hua-Lin Zhang
    Shui-Jing Wu
    Yu-Qian Guo
    Kai Zhang
    Cong-Li Zeng
    Xiang-Ming Fang
    World Journal of Pediatrics, 2023, 19 : 1094 - 1103
  • [24] Analysis and validation of diagnostic biomarkers and immune cell infiltration characteristics in pediatric sepsis by integrating bioinformatics and machine learning
    Zhang, Wen-Yuan
    Chen, Zhong-Hua
    An, Xiao-Xia
    Li, Hui
    Zhang, Hua-Lin
    Wu, Shui-Jing
    Guo, Yu-Qian
    Zhang, Kai
    Zeng, Cong-Li
    Fang, Xiang-Ming
    WORLD JOURNAL OF PEDIATRICS, 2023, 19 (11) : 1094 - 1103
  • [25] Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning
    Wang, Jing
    Kang, Zijian
    Liu, Yandong
    Li, Zifu
    Liu, Yang
    Liu, Jianmin
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [26] Integrated transcriptomic analysis and machine learning for characterizing diagnostic biomarkers and immune cell infiltration in fetal growth restriction
    Wei, Xing
    Liu, Zesi
    Cai, Luyao
    Shi, Dayuan
    Sun, Qianqian
    Zhang, Luye
    Zhou, Fenhe
    Sun, Luming
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [27] A vigorous machine learning-based framework for the identification of LUTD biomarkers
    Akshay, A.
    Besic, M.
    Burkhard, F.
    Bruggmann, R.
    Monastyrskaya, K.
    Gheinani, Hashemi A.
    EUROPEAN UROLOGY, 2022, 81 : S1047 - S1047
  • [28] A Machine Learning-Based Voice Analysis for the Detection of Dysphagia Biomarkers
    Cesarini, Valerio
    Casiddu, Niccolo
    Porfirione, Claudia
    Massazza, Giulia
    Saggio, Giovanni
    Costantini, Giovanni
    2021 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 & IOT (IEEE METROIND4.0 & IOT), 2021, : 407 - 411
  • [29] Evaluation of deep machine learning-based models of soil cumulative infiltration
    Sepahvand, Alireza
    Golkarian, Ali
    Billa, Lawal
    Wang, Kaiwen
    Rezaie, Fatemeh
    Panahi, Somayeh
    Samadianfard, Saeed
    Khosravi, Khabat
    EARTH SCIENCE INFORMATICS, 2022, 15 (03) : 1861 - 1877
  • [30] Evaluation of deep machine learning-based models of soil cumulative infiltration
    Alireza Sepahvand
    Ali Golkarian
    Lawal Billa
    Kaiwen Wang
    Fatemeh Rezaie
    Somayeh Panahi
    Saeed Samadianfard
    Khabat Khosravi
    Earth Science Informatics, 2022, 15 : 1861 - 1877