Lithium nitrate mediated dynamic formation of solid electrolyte interphase revealed by in situ Fourier transform infrared spectroscopy

被引:15
|
作者
Wu, Longsheng [1 ,2 ]
Hu, Jingping [1 ,2 ,3 ]
Chen, Sijing [1 ,2 ]
Yang, Xiaorong [1 ,2 ]
Liu, Lu [1 ,2 ]
Foord, John S. [4 ]
Pobedinskas, Paulius [5 ,6 ]
Haenen, Ken [5 ,6 ]
Hou, Huijie [1 ,2 ]
Yang, Jiakuan [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Environm Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[2] Hubei Prov Engn Lab Solid Waste Treatment Disposal, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
[4] Univ Oxford, Dept Chem, Chem Res Lab, 12 Mansfield Rd, Oxford OX1 3TA, England
[5] Hasselt Univ, Inst Mat Res IMO, Wetenschapspk 1, B-3590 Diepenbeek, Belgium
[6] IMEC VZW, IMOMEC, Wetenschapspk 1, B-3590 Diepenbeek, Belgium
基金
中国国家自然科学基金;
关键词
Solid electrolyte interphase; LiNO3; Lithium electrode; In situ Fourier transform infrared spectroscopy; Ab initio molecular dynamics; GENERALIZED GRADIENT APPROXIMATION; MOLECULAR-DYNAMICS; SURFACE-FILM; ANODE; DENSITY; LINO3; REDUCTION; BEHAVIOR; STABILITY; BATTERIES;
D O I
10.1016/j.electacta.2023.142973
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A stable solid electrolyte interphase (SEI) plays a vital role in the cyclic stability and Coulombic efficiency (CE) of high-performance lithium-sulfur (Li-S) batteries. It is recognized that the LiNO3 additive can stabilize the SEI of the lithium electrode. However, the exact mechanism of the LiNO3 additive on the SEI of the lithium electrode remains unclear. In this work, we first revealed the mediation mechanism of LiNO3 additive on the dynamic evolution of the SEI on a lithium anode surface through in situ Fourier transform infrared (FTIR) spectroscopy and ab initio molecular dynamics (AIMD) methods. The FTIR and AIMD results directly proved that LiNO3 can accelerate the reduction of lithium bis(trifluoromethyl sulfonyl)imide (LiTFSI) into small molecules rich in Li2O on lithium anode, thus forming a compact and stable SEI after immersing in the LiNO3-containing electrolyte. Moreover, the decomposition of LiTFSI and the solvent is hindered in the subsequent lithium deposition stripping process due to the stable SEI, thus leading to higher Coulombic efficiency and long-term cyclic stability. In addition, an ROSO2Li-like intermediate is also observed during the lithium deposition process while decomposing or diffusing away during the lithium stripping process, maintaining a dynamic formation/dissolution equilibrium of the SEI. This research provides a new insight into understanding the role of LiNO3 in stabilizing lithium electrode.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Determination of solid fat index by fourier transform infrared spectroscopy
    van de Voort, F.R.
    Memon, K.P.
    Sedman, J.
    Ismail, A.A.
    JAOCS, Journal of the American Oil Chemists' Society, 1996, 73 (04): : 411 - 416
  • [32] A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries
    Li, Borong
    Chao, Yu
    Li, Mengchao
    Xiao, Yuanbin
    Li, Rui
    Yang, Kang
    Cui, Xiancai
    Xu, Gui
    Li, Lingyun
    Yang, Chengkai
    Yu, Yan
    Wilkinson, David P.
    Zhang, Jiujun
    ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
  • [33] Solid Electrolyte Interphase Formation on Lithium Metal Anode in Polymer Electrolytes
    Ushakova, Elena
    Itkis, Daniil
    Sergeev, Vladimir
    Karpushkin, Evgenij
    Jashina, Lada
    PROCEEDINGS OF INTERNATIONAL CONFERENCE MODERN ELECTROCHEMICAL METHODS XXXIX, 2019, : 223 - 226
  • [34] Competitive Solid-Electrolyte Interphase Formation on Working Lithium Anodes
    Xu, Rui
    Yan, Chong
    Huang, Jia-Qi
    TRENDS IN CHEMISTRY, 2021, 3 (01): : 5 - 14
  • [35] Solid electrolyte interphase formation by propylene carbonate reduction for lithium anode
    Qian, Qinlai
    Yang, Yifu
    Shao, Huixia
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (42) : 28772 - 28780
  • [36] A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries
    Borong Li
    Yu Chao
    Mengchao Li
    Yuanbin Xiao
    Rui Li
    Kang Yang
    Xiancai Cui
    Gui Xu
    Lingyun Li
    Chengkai Yang
    Yan Yu
    David P. Wilkinson
    Jiujun Zhang
    Electrochemical Energy Reviews, 2023, 6
  • [37] Revealing Lithium Nitrate-Mediated Solid-Electrolyte Interphase of Lithium Metal Anode via Cryogenic Transmission Electron Microscopy
    Zhen, Cheng
    Yang, Xuming
    Wei, Xianbin
    Zhu, Yuanmin
    Han, Shaobo
    Shi, Xiaobo
    Deng, Li
    Gu, M. Danny
    NANO LETTERS, 2024, 24 (22) : 6714 - 6721
  • [38] Adsorption of Lithium at graphite surfaces and the formation of the solid-electrolyte interphase
    Pastewka, Lars
    Malola, Sami
    Moseler, Michael
    Koskinen, Pekka
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [39] Operando Investigation of Solid Electrolyte Interphase Formation, Dynamic Evolution, and Degradation During Lithium Plating/Stripping
    Krumov, Mihail R.
    Lang, Shuangyan
    Johnson, Lucas
    Abruna, Hector D.
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (40) : 47692 - 47703
  • [40] Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy
    Bertilsson, Simon
    Larsson, Fredrik
    Furlani, Maurizio
    Albinsson, Ingvar
    Mellander, Bengt-Erik
    JOURNAL OF POWER SOURCES, 2017, 365 : 446 - 455