Fabrication and Characterization of Porous Diopside/Akermanite Ceramics with Prospective Tissue Engineering Applications

被引:3
|
作者
Nicoara, Adrian Ionut [1 ,2 ,3 ]
Alecu, Andrada Elena [1 ,3 ]
Balaceanu, Gabriel-Costin [1 ]
Puscasu, Eliza Maria [1 ]
Vasile, Bogdan Stefan [3 ,4 ]
Trusca, Roxana [1 ,3 ]
机构
[1] Natl Univ Sci & Technol Politehn Bucharest, Fac Chem Engn & Biotechnol, Dept Sci & Engn Oxide Mat & Nanomat, Bucharest 011061, Romania
[2] Natl R&D Inst Nonferrous & Rare Met, IMNR, Bucharest, Romania
[3] Natl Univ Sci & Technol Politehn Bucharest, Natl Res Ctr Micro & Nanomat, Bucharest 060042, Romania
[4] Natl Univ Sci & Technol Politehn Bucharest, Res Ctr Adv Mat Prod & Proc, Bucharest 060042, Romania
关键词
porous ceramic; hard tissue; diopside; akermanite; bone regeneration; sucrose; MECHANICAL-PROPERTIES; BONE; SCAFFOLDS; BIOACTIVITY; PHOSPHATE;
D O I
10.3390/ma16165548
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tissue engineering requires new materials that can be used to replace damaged bone parts. Since hydroxyapatite, currently widely used, has low mechanical resistance, silicate ceramics can represent an alternative. The aim of this study was to obtain porous ceramics based on diopside (CaMgSi2O6) and akermanite (Ca2MgSi2O7) obtained at low sintering temperatures. The powder synthesized by the sol-gel method was pressed in the presence of a porogenic agent represented by commercial sucrose in order to create the desired porosity. The ceramic bodies obtained after sintering thermal treatment at 1050 degrees C and 1250 degrees C, respectively, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) to determine the chemical composition. The open porosity was situated between 32.5 and 34.6%, and the compressive strength had a maximum value of 11.4 MPa for the samples sintered at 1250 degrees C in the presence of a 20% wt porogenic agent. A cell viability above 70% and the rapid development of an apatitic phase layer make these materials good candidates for use in hard tissue engineering.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Fabrication of a chitosan/bioglass three-dimensional porous scaffold for bone tissue engineering applications
    Yang, Jun
    Long, Teng
    He, Nan-Fei
    Guo, Ya-Ping
    Zhu, Zhen-An
    Ke, Qin-Fei
    JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (38) : 6611 - 6618
  • [42] Hierarchically porous scaffolds for tissue engineering applications
    Xia, Younan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [43] Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications
    Gupta, Sweta K.
    Dinda, Amit K.
    Potdar, Pravin D.
    Mishra, Narayan C.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (07): : 4032 - 4038
  • [44] Fabrication, modelling and use of porous ceramics for ultrasonic transducer applications
    F. Levassort
    J. Holc
    E. Ringgaard
    T. Bove
    M. Kosec
    M. Lethiecq
    Journal of Electroceramics, 2007, 19 : 127 - 139
  • [45] Fabrication, modelling and use of porous ceramics for ultrasonic transducer applications
    Levassort, F.
    Holc, J.
    Ringgaard, E.
    Bove, T.
    Kosec, M.
    Lethiecq, M.
    JOURNAL OF ELECTROCERAMICS, 2007, 19 (01) : 127 - 139
  • [46] Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering
    Cui, Zhixiang
    Lin, Luyin
    Si, Junhui
    Luo, Yufei
    Wang, Qianting
    Lin, Yongnan
    Wang, Xiaofeng
    Chen, Wenzhe
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2017, 28 (09) : 826 - 845
  • [47] Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering
    Khan, M. Nuruzzaman
    Islam, Jahid M. M.
    Khan, Mubarak A.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (11) : 3020 - 3028
  • [48] Design and fabrication of novel chitin hydrogel/chitosan/nano diopside composite scaffolds for tissue engineering
    Moatary, Athar
    Teimouri, Abbas
    Bagherzadeh, Mojtaba
    Chermahini, Alireza Najafi
    Razavizadeh, Roya
    CERAMICS INTERNATIONAL, 2017, 43 (02) : 1657 - 1668
  • [49] Porous anodic alumina: Fabrication, characterization and applications
    Thompson, GE
    THIN SOLID FILMS, 1997, 297 (1-2) : 192 - 201
  • [50] Fabrication and characterization of poly-(ε)-caprolactone and bioactive glass composites for tissue engineering applications
    Mohammadkhah, Ali
    Marquardt, Laura M.
    Sakiyama-Elbert, Shelly E.
    Day, Delbert E.
    Harkins, Amy B.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 49 : 632 - 639