Accelerated Multi-step Sulfur Redox Reactions in Lithium-Sulfur Batteries Enabled by Dual Defects in Metal-Organic Framework-based Catalysts

被引:50
|
作者
Wang, Xin [1 ,2 ]
Zhang, Xiaomin [1 ,2 ,3 ]
Zhao, Yan [4 ]
Luo, Dan [3 ,5 ]
Shui, Lingling [1 ,2 ]
Li, Yebao [1 ,2 ]
Ma, Ge [1 ,2 ]
Zhu, Yaojie [1 ,2 ]
Zhang, Yongguang [3 ]
Zhou, Guofu [1 ,2 ]
Yu, Aiping [5 ]
Chen, Zhongwei [5 ]
机构
[1] South China Normal Univ, South China Acad Adv Optoelect, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Int Acad Optoelect Zhaoqing, Guangzhou 510006, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
[4] Hebei Univ Technol, Sch Mat Sci & Engn, State Key Lab Reliabil & Intelligence Elect Equipm, Tianjin 300130, Peoples R China
[5] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Li-S battery; new type catalyst; dual-defect MOF; multiple conversion reaction; polysulfides; NANOPARTICLE; EFFICIENCY; UIO-66;
D O I
10.1002/anie.202306901
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The sluggish sulfur redox kinetics and shuttle effect of lithium polysulfides (LiPSs) are recognized as the main obstacles to the practical applications of the lithium-sulfur (Li-S) batteries. Accelerated conversion by catalysis can mitigate these issues, leading to enhanced Li-S performance. However, a catalyst with single active site cannot simultaneously accelerate multiple LiPSs conversion. Herein, we developed a novel dual-defect (missing linker and missing cluster defects) metal-organic framework (MOF) as a new type of catalyst to achieve synergistic catalysis for the multi-step conversion reaction of LiPSs. Electrochemical tests and first-principle density functional theory (DFT) calculations revealed that different defects can realize targeted acceleration of stepwise reaction kinetics for LiPSs. Specifically, the missing linker defects can selectively accelerate the conversion of S-8 & RARR;Li2S4, while the missing cluster defects can catalyze the reaction of Li2S4 & RARR;Li2S, so as to effectively inhibit the shuttle effect. Hence, the Li-S battery with an electrolyte to sulfur (E/S) ratio of 8.9 mL g(-1) delivers a capacity of 1087 mAh g(-1) at 0.2 C after 100 cycles. Even at high sulfur loading of 12.9 mg cm(-2) and E/S=3.9 mL g(-1), an areal capacity of 10.4 mAh cm(-2) for 45 cycles can still be obtained.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Amorphous bimetallic-organic framework enable accelerated redox kinetics and polysulfide trapping for lithium-sulfur batteries
    Bi, Jingkun
    Chen, Lu
    Yan, Xiao
    Guo, Jian
    Tang, Ya
    Jian, Ma
    Meng, Shuo
    Liao, Kexuan
    Yu, Jia
    Yao, Wenli
    He, Ting
    Zhao, Hongbin
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [32] Bimetal-Organic Framework Nanoboxes Enable Accelerated Redox Kinetics and Polysulfide Trapping for Lithium-Sulfur Batteries
    Zhu, Zhuo
    Zeng, Yinxiang
    Pei, Zhihao
    Luan, Deyan
    Wang, Xin
    Lou, Xiong Wen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (31)
  • [33] Conductive vanadium-based metal-organic framework nanosheets membranes as polysulfide inhibitors for lithium-sulfur batteries
    Wang, Yanan
    Cao, Shuyi
    Zhao, Jiangyuan
    Zhang, Xiongfu
    Du, Xiaohang
    Li, Jingde
    Wu, Feichao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [34] Metal-Organic Framework-Based Lithium-Oxygen Batteries
    Jiang, Zhuoliang
    Wen, Bo
    Huang, Yaohui
    Li, Haixia
    Li, Fujun
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (64)
  • [35] Regulating Coordination Environment in Metal-Organic Frameworks for Adsorption and Redox Conversion of Polysulfides in Lithium-Sulfur Batteries
    Xiao, Yingbo
    Gong, Wei
    Guo, Sijia
    Ouyang, Yuan
    Li, Dixiong
    Li, Xin
    Zeng, Qinghan
    He, Wenchao
    Deng, Haoyan
    Tan, Chao
    Zhang, Qi
    Huang, Shaoming
    ACS MATERIALS LETTERS, 2021, 3 (12): : 1684 - 1694
  • [36] Creating Edge Sites within the 2D Metal-Organic Framework Boosts Redox Kinetics in Lithium-Sulfur Batteries
    Wang, Xingbo
    Zhao, Chunrong
    Liu, Bingxue
    Zhao, Shangqian
    Zhang, Yongguang
    Qian, Lanting
    Chen, Zhongjun
    Wang, Jiantao
    Wang, Xin
    Chen, Zhongwei
    ADVANCED ENERGY MATERIALS, 2022, 12 (42)
  • [37] Bimetallic Metal-Organic Framework with High-Adsorption Capacity toward Lithium Polysulfides for Lithium-sulfur Batteries
    Geng, Pengbiao
    Du, Meng
    Guo, Xiaotian
    Pang, Huan
    Tian, Ziqi
    Braunstein, Pierre
    Xu, Qiang
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (02) : 599 - 607
  • [38] Cations Mediate Lithium Polysulfide Adsorption in Metal-Organic Frameworks for Lithium-Sulfur Batteries
    Jarrin, Roberto A.
    Bennett, Kevin
    Thoi, V. Sara
    Bukowski, Brandon C.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (43): : 21431 - 21439
  • [39] Metal-Organic Framework/Carbon Nanotube-Based Foldable Lithium-Sulfur Battery
    Zhuang Lin
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (04) : 655 - 655
  • [40] A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium-Sulfur Batteries
    Chen, Liping
    Cao, Guiqiang
    Li, Yong
    Zu, Guannan
    Duan, Ruixian
    Bai, Yang
    Xue, Kaiyu
    Fu, Yonghong
    Xu, Yunhua
    Wang, Juan
    Li, Xifei
    NANO-MICRO LETTERS, 2024, 16 (01)