Boundary Lipschitz Regularity and the Hopf Lemma for Fully Nonlinear Elliptic Equations

被引:1
|
作者
Lian, Yuanyuan [1 ]
Zhang, Kai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Boundary regularity; Lipschitz continuity; Hopf lemma; Fully nonlinear elliptic equation; VISCOSITY SOLUTIONS;
D O I
10.1007/s11118-023-10085-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the boundary regularity for viscosity solutions of fully nonlinear elliptic equations. We use a unified, simple method to prove that if the domain O satisfies the exterior C(1,Dini )condition at x(0) ? ?O, the solution is Lipschitz continuous at x(0); if O satisfies the interior C-1,C-Dini condition at x(0), the Hopf lemma holds at x(0). The key idea is that the curved boundaries are regarded as perturbations of a hyperplane. Moreover, we show that the C-1,C-Dini conditions are optimal.
引用
收藏
页码:1231 / 1247
页数:17
相关论文
共 50 条
  • [21] New regularity estimates for fully nonlinear elliptic equations
    Nascimento, Thialita M.
    Teixeira, Eduardo V.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 171 : 1 - 25
  • [22] Fractional Sobolev regularity for fully nonlinear elliptic equations
    Pimentel, Edgard A.
    Santos, Makson S.
    Teixeira, Eduardo, V
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (08) : 1539 - 1558
  • [23] Boundary Lipschitz Regularity of Solutions for Semilinear Elliptic Equations in Divergence Form
    Jing Qi Liang
    Li He Wang
    Chun Qin Zhou
    Acta Mathematica Sinica, English Series, 2023, 39 : 193 - 208
  • [24] Boundary Lipschitz Regularity of Solutions for Semilinear Elliptic Equations in Divergence Form
    Liang, Jing Qi
    Wang, Li He
    Zhou, Chun Qin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (02) : 193 - 208
  • [25] Boundary Lipschitz Regularity of Solutions for Semilinear Elliptic Equations in Divergence Form
    Jing Qi LIANG
    Li He WANG
    Chun Qin ZHOU
    ActaMathematicaSinica,EnglishSeries, 2023, (02) : 193 - 208
  • [26] Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations
    YanYan Li
    Luc Nguyen
    Bo Wang
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [27] Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations
    Li, YanYan
    Luc Nguyen
    Wang, Bo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
  • [28] Optimal boundary regularity for nonlinear singular elliptic equations
    Jian, Huaiyu
    Wang, Xu-jia
    ADVANCES IN MATHEMATICS, 2014, 251 : 111 - 126
  • [29] Optimal C 1,? regularity for degenerate fully nonlinear elliptic equations with Neumann boundary condition
    Ricarte, Gleydson C.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [30] C1,α Regularity for Degenerate Fully Nonlinear Elliptic Equations with Neumann Boundary Conditions
    Banerjee, Agnid
    Verma, Ram Baran
    POTENTIAL ANALYSIS, 2022, 57 (03) : 327 - 365