Boundary Lipschitz Regularity and the Hopf Lemma for Fully Nonlinear Elliptic Equations

被引:1
|
作者
Lian, Yuanyuan [1 ]
Zhang, Kai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Boundary regularity; Lipschitz continuity; Hopf lemma; Fully nonlinear elliptic equation; VISCOSITY SOLUTIONS;
D O I
10.1007/s11118-023-10085-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the boundary regularity for viscosity solutions of fully nonlinear elliptic equations. We use a unified, simple method to prove that if the domain O satisfies the exterior C(1,Dini )condition at x(0) ? ?O, the solution is Lipschitz continuous at x(0); if O satisfies the interior C-1,C-Dini condition at x(0), the Hopf lemma holds at x(0). The key idea is that the curved boundaries are regarded as perturbations of a hyperplane. Moreover, we show that the C-1,C-Dini conditions are optimal.
引用
收藏
页码:1231 / 1247
页数:17
相关论文
共 50 条
  • [1] Boundary Lipschitz Regularity and the Hopf Lemma for Fully Nonlinear Elliptic Equations
    Yuanyuan Lian
    Kai Zhang
    Potential Analysis, 2024, 60 : 1231 - 1247
  • [2] Boundary Lipschitz regularity and the Hopf lemma on Reifenberg domains for fully nonlinear elliptic equations
    Lian, Yuanyuan
    Xu, Wenxiu
    Zhang, Kai
    MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) : 343 - 357
  • [3] Boundary Lipschitz regularity and the Hopf lemma on Reifenberg domains for fully nonlinear elliptic equations
    Yuanyuan Lian
    Wenxiu Xu
    Kai Zhang
    manuscripta mathematica, 2021, 166 : 343 - 357
  • [4] Boundary Regularity for Viscosity Solutions of Fully Nonlinear Elliptic Equations
    Silvestre, Luis
    Sirakov, Boyan
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (09) : 1694 - 1717
  • [5] Regularity for fully nonlinear elliptic equations with Neumann boundary data
    Milakis, Emmanouil
    Silvestre, Luis E.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (08) : 1227 - 1252
  • [6] Regularity for Fully Nonlinear Elliptic Equations with Oblique Boundary Conditions
    Dongsheng Li
    Kai Zhang
    Archive for Rational Mechanics and Analysis, 2018, 228 : 923 - 967
  • [7] Regularity for Fully Nonlinear Elliptic Equations with Oblique Boundary Conditions
    Li, Dongsheng
    Zhang, Kai
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (03) : 923 - 967
  • [8] Hopf Lemma and regularity results for quasilinear anisotropic elliptic equations
    Castorina, Daniele
    Riey, Giuseppe
    Sciunzi, Berardino
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (03)
  • [9] Hopf Lemma and regularity results for quasilinear anisotropic elliptic equations
    Daniele Castorina
    Giuseppe Riey
    Berardino Sciunzi
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [10] On the Hopf boundary lemma for singular semilinear elliptic equations
    Canino, Annamaria
    Esposito, Francesco
    Sciunzi, Berardino
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (09) : 5488 - 5499