Understanding the cell Future views of structural biology

被引:12
|
作者
Beck, Martin [1 ,3 ]
Covino, Roberto [2 ]
Haenelt, Inga [3 ]
Mueller-McNicoll, Michaela [3 ]
机构
[1] Max Planck Inst Biophys, Max von Laue Str 3, D-60438 Frankfurt, Germany
[2] Frankfurt Inst Adv Studies, Ruth Moufang Str 1, D-60438 Frankfurt, Germany
[3] Goethe Univ Frankfurt, Frankfurt, Germany
关键词
LIQUID PHASE-SEPARATION; CRYOELECTRON TOMOGRAPHY; MOLECULAR SOCIOLOGY; PROTEIN FUNCTION; LIPID-BILAYERS; FORCE-FIELD; DYNAMICS; FLUORESCENCE; STATES; MECHANISMS;
D O I
10.1016/j.cell.2023.12.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Determining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss presentday limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells. We predict that the progression toward structural cell biology will involve a shift toward conceptualizing a 4D virtual reality of cells using digital twins. These will capture cellular segments in a highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular processes, leading to novel and experimentally testable predictions. Transferring biological questions into algorithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how cells work.
引用
收藏
页码:545 / 562
页数:18
相关论文
共 50 条
  • [31] Understanding cell biology with small molecules
    不详
    BIOTECHNIQUES, 2014, 56 (05) : 215 - 215
  • [32] Bioelectrical understanding and engineering of cell biology
    Schofield, Zoe
    Meloni, Gabriel N.
    Tran, Peter
    Zerfass, Christian
    Sena, Giovanni
    Hayashi, Yoshikatsu
    Grant, Murray
    Contera, Sonia A.
    Minteer, Shelley D.
    Kim, Minsu
    Prindle, Arthur
    Rocha, Paulo
    Djamgoz, Mustafa B. A.
    Pilizota, Teuta
    Unwin, Patrick R.
    Asally, Munehiro
    Soyer, Orkun S.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2020, 17 (166)
  • [33] AlphaFold2 and the future of structural biology
    Patrick Cramer
    Nature Structural & Molecular Biology, 2021, 28 : 704 - 705
  • [34] Structural Biology at Elettra Sincrotrone - the present and the future
    Hegde, Raghurama P.
    Demitri, Nicola
    Polentarutti, Maurizio
    Bais, Giorgio
    Storici, Paola
    Onesti, Silvia
    Cianci, Michele
    Vaccari, Lisa
    Heroux, Annie
    Gopal, B.
    Sarma, D. D.
    Paolucci, Giorgio
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2024, 80
  • [35] AlphaFold and the future of structural biology1
    Read, Randy J.
    Baker, Edward N.
    Bond, Charles S.
    Garman, Elspeth F.
    van Raaij, Mark J.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2023, 79 : 556 - 558
  • [36] The future is bright- structural biology at FELs
    Schlichting, I.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C35 - C35
  • [37] LEARNING OF BIOLOGY - STRUCTURAL BASIS FOR FUTURE RESEARCH
    MURRAY, DL
    AMERICAN BIOLOGY TEACHER, 1977, 39 (07): : 415 - &
  • [38] AlphaFold2 and the future of structural biology
    Cramer, Patrick
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2021, 28 (09) : 704 - 705
  • [39] The power of scientific collaborations and the future of structural biology
    Beltrao, Pedro
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2024, 31 (09) : 1309 - 1310
  • [40] Melatonin in macrophage biology: Current understanding and future perspectives
    Xia, Yaoyao
    Chen, Siyuan
    Zeng, Sijing
    Zhao, Yuanyuan
    Zhu, Congrui
    Deng, Baichuan
    Zhu, Guoqiang
    Yin, Yulong
    Wang, Wence
    Hardeland, Ruediger
    Ren, Wenkai
    JOURNAL OF PINEAL RESEARCH, 2019, 66 (02)