Phase diagram of one-dimensional driven-dissipative exciton-polariton condensates

被引:2
|
作者
Vercesi, Francesco [1 ]
Fontaine, Quentin [2 ]
Ravets, Sylvain [2 ]
Bloch, Jacqueline [2 ]
Richard, Maxime [3 ,4 ]
Canet, Leonie [1 ,5 ]
Minguzzi, Anna [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, LPMMC, F-38000 Grenoble, France
[2] Univ Paris Saclay, CNRS, Ctr Nanosci & Nanotechnol C2N, F-91120 Palaiseau, France
[3] Natl Univ Singapore, Nanyang Technol Univ, French Natl Ctr Sci Res,Sorbonne Univ, Majulab Int Res Lab,Univ Cote dAzur, Singapore, Singapore
[4] Natl Univ Singapore, Ctr Quantum technol, Singapore 117543, Singapore
[5] Inst Univ France, 5 rue Descartes, F-75005 Paris, France
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
REGIMES;
D O I
10.1103/PhysRevResearch.5.043062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a one-dimensional driven-dissipative exciton-polariton condensate under incoherent pump, described by the stochastic generalized Gross-Pitaevskii equation. It was shown that the condensate phase dynamics maps under some assumptions to the Kardar-Parisi-Zhang (KPZ) equation, and the temporal coherence of the condensate follows a stretched exponential decay characterized by KPZ universal exponents. In this paper, we determine the main mechanisms, which lead to the departure from the KPZ phase, and identify three possible other regimes: (i) a soliton-patterned regime at large interactions and weak noise, populated by localized structures analog to dark solitons; (ii) a vortex-disordered regime at high noise and weak interactions, dominated by point-like phase defects in space-time; and (iii) a defect-free reservoir-textured regime where the adiabatic approximation breaks down. We characterize each regime by the space-time maps, the first-order correlations, the momentum distribution and the density of topological defects. We thus obtain the phase diagram at varying noise, pump intensity and interaction strength. Our predictions are amenable to observation in state-of-art experiments with exciton-polaritons.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Nonlinear band-structure of an exciton-polariton condensate in a one-dimensional lattice
    Chestnov, I. Yu.
    Yulin, A. V.
    Alodjants, A. P.
    Shelykh, I. A.
    Egorov, O. A.
    2016 INTERNATIONAL CONFERENCE LASER OPTICS (LO), 2016,
  • [32] Localization-Delocalization Transition in Disordered One-Dimensional Exciton-Polariton System
    A. V. Larionov
    A. S. Brichkin
    S. Höfling
    V. D. Kulakovskii
    Semiconductors, 2018, 52 : 458 - 461
  • [33] Localization-Delocalization Transition in Disordered One-Dimensional Exciton-Polariton System
    Larionov, A. V.
    Brichkin, A. S.
    Hoefling, S.
    Kulakovskii, V. D.
    SEMICONDUCTORS, 2018, 52 (04) : 458 - 461
  • [34] Spatial correlations of one-dimensional driven-dissipative systems of Rydberg atoms
    Hu, Anzi
    Lee, Tony E.
    Clark, Charles W.
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [35] Theory of relaxation oscillations in exciton-polariton condensates
    Opala, Andrzej
    Pieczarka, Maciej
    Matuszewski, Michal
    PHYSICAL REVIEW B, 2018, 98 (19)
  • [36] Quantum technology applications of exciton-polariton condensates
    Moxley, Frederick Ira, III
    Ilo-Okeke, Ebubechukwu O.
    Mudaliar, Saba
    Byrnes, Tim
    EMERGENT MATERIALS, 2021, 4 (04) : 971 - 988
  • [37] Observation of Bogoliubov excitations in exciton-polariton condensates
    Utsunomiya, S.
    Tian, L.
    Roumpos, G.
    Lai, C. W.
    Kumada, N.
    Fujisawa, T.
    Kuwata-Gonokami, M.
    Loeffler, A.
    Hoefling, S.
    Forchel, A.
    Yamamoto, Y.
    NATURE PHYSICS, 2008, 4 (09) : 700 - 705
  • [38] Adiabatic approximation and fluctuations in exciton-polariton condensates
    Bobrovska, Nataliya
    Matuszewski, Michal
    PHYSICAL REVIEW B, 2015, 92 (03)
  • [39] Long Josephson junctions with exciton-polariton condensates
    Munoz Mateo, A.
    Rubo, Y. G.
    Toikka, L. A.
    PHYSICAL REVIEW B, 2020, 101 (18)
  • [40] Oscillatory dynamics of nonequilibrium dissipative exciton-polariton condensates in weak-contrast lattices
    Ma, X.
    Chestnov, I. Yu.
    Charukhchyan, M. V.
    Alodjants, A. P.
    Egorov, O. A.
    PHYSICAL REVIEW B, 2015, 91 (21)