An Adaptive Intrusion Detection System in the Internet of Medical Things Using Fuzzy-Based Learning

被引:7
|
作者
Alalhareth, Mousa [1 ,2 ]
Hong, Sung-Chul [2 ]
机构
[1] Najran Univ, Coll Comp Sci & Informat Syst, Dept Informat Syst, Najran 61441, Saudi Arabia
[2] Towson Univ, Dept Comp & Informat Sci, Towson, MD 21204 USA
关键词
IoMT; IDS; LSTM; fuzzy logic; healthcare; deep learning; CYBER-ATTACK DETECTION; NEURAL-NETWORK; IOT NETWORK; DEEP; FRAMEWORK;
D O I
10.3390/s23229247
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The Internet of Medical Things (IoMT) is a growing trend within the rapidly expanding Internet of Things, enhancing healthcare operations and remote patient monitoring. However, these devices are vulnerable to cyber-attacks, posing risks to healthcare operations and patient safety. To detect and counteract attacks on the IoMT, methods such as intrusion detection systems, log monitoring, and threat intelligence are utilized. However, as attackers refine their methods, there is an increasing shift toward using machine learning and deep learning for more accurate and predictive attack detection. In this paper, we propose a fuzzy-based self-tuning Long Short-Term Memory (LSTM) intrusion detection system (IDS) for the IoMT. Our approach dynamically adjusts the number of epochs and utilizes early stopping to prevent overfitting and underfitting. We conducted extensive experiments to evaluate the performance of our proposed model, comparing it with existing IDS models for the IoMT. The results show that our model achieves high accuracy, low false positive rates, and high detection rates, indicating its effectiveness in identifying intrusions. We also discuss the challenges of using static epochs and batch sizes in deep learning models and highlight the importance of dynamic adjustment. The findings of this study contribute to the development of more efficient and accurate IDS models for IoMT scenarios.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] An Efficient Fuzzy-Based Hybrid System to Cloud Intrusion Detection
    Sivakami Raja
    Saravanan Ramaiah
    International Journal of Fuzzy Systems, 2017, 19 : 62 - 77
  • [22] A Particle Swarm Optimization and Deep Learning Approach for Intrusion Detection System in Internet of Medical Things
    Chaganti, Rajasekhar
    Mourade, Azrour
    Ravi, Vinayakumar
    Vemprala, Naga
    Dua, Amit
    Bhushan, Bharat
    SUSTAINABILITY, 2022, 14 (19)
  • [23] Survey of Intrusion Detection Using Deep Learning in the Internet of Things
    Farhan B.I.
    Jasim A.D.
    Iraqi Journal for Computer Science and Mathematics, 2022, 3 (01): : 83 - 93
  • [24] An Intelligent Intrusion Detection System for Internet of Things Attack Detection and Identification Using Machine Learning
    Othman, Trifa S.
    Abdullah, Saman M.
    ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 2023, 11 (01): : 126 - 137
  • [25] Intrusion detection for Industrial Internet of Things based on deep learning
    Lu, Yaoyao
    Chai, Senchun
    Suo, Yuhan
    Yao, Fenxi
    Zhang, Chen
    NEUROCOMPUTING, 2024, 564
  • [26] Blockchain based federated learning for intrusion detection for Internet of Things
    Nan Sun
    Wei Wang
    Yongxin Tong
    Kexin Liu
    Frontiers of Computer Science, 2024, 18
  • [27] Intrusion Detection Model of Internet of Things Based on Deep Learning
    Wang, Yan
    Han, Dezhi
    Cui, Mingming
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2023, 20 (04) : 1519 - 1540
  • [28] Blockchain based federated learning for intrusion detection for Internet of Things
    Sun, Nan
    Wang, Wei
    Tong, Yongxin
    Liu, Kexin
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (05)
  • [29] An intrusion detection method for internet of things based on suppressed fuzzy clustering
    Liqun Liu
    Bing Xu
    Xiaoping Zhang
    Xianjun Wu
    EURASIP Journal on Wireless Communications and Networking, 2018
  • [30] An intrusion detection method for internet of things based on suppressed fuzzy clustering
    Liu, Liqun
    Xu, Bing
    Zhang, Xiaoping
    Wu, Xianjun
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2018,