Development of an optimal machine learning model to detect features of wheezing in children

被引:0
|
作者
Kim, Kyunghoon [1 ]
Moon, Hye Jeong [2 ]
Kim, Baek Seung [3 ]
机构
[1] Seoul Natl Univ, Dept Pediat, Coll Med, Seoul, South Korea
[2] Seoul Natl Univ Hosp, Dept Pediat, Seoul, South Korea
[3] Seoul Natl Univ, Bundang Hosp, Dept Pediat, Seongnam, South Korea
关键词
D O I
10.1183/13993003.congress-2023.PA2901
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [31] A Machine Learning Based Approach to Detect Machine Learning Design Patterns
    Pan, Weitao
    Washizaki, Hironori
    Yoshioka, Nobukazu
    Fukazawa, Yoshiaki
    Khomh, Foutse
    Gueheneuc, Yann-Gael
    PROCEEDINGS OF THE 2023 30TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, APSEC 2023, 2023, : 574 - 578
  • [32] Seed identification using machine vision: Machine learning features and model performance
    Himmelboe, Martin
    Jorgensen, Johannes Ravn
    Gislum, Rene
    Boelt, Birte
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 231
  • [33] Development of features for blade rubbing defect classification in machine learning
    Park, Dong Hee
    Lee, Jeong Jun
    Cheong, Deok Yeong
    Eom, Ye Jun
    Kim, Seon Hwa
    Choi, Byeong Keun
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (01) : 1 - 9
  • [34] Development of features for blade rubbing defect classification in machine learning
    Dong Hee Park
    Jeong Jun Lee
    Deok Yeong Cheong
    Ye Jun Eom
    Seon Hwa Kim
    Byeong Keun Choi
    Journal of Mechanical Science and Technology, 2024, 38 : 1 - 9
  • [35] Machine Learning Model for Vaccine Development: A Perspective
    Dubey, Anubha
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (02): : 762 - 769
  • [36] Learning to detect and combine the features of an object
    Suchow, Jordan W.
    Pelli, Denis G.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (02) : 785 - 790
  • [37] Learning to Detect Features in Texture Images
    Zhang, Linguang
    Rusinkiewicz, Szymon
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6325 - 6333
  • [38] Using machine learning to detect misstatements
    Bertomeu, Jeremy
    Cheynel, Edwige
    Floyd, Eric
    Pan, Wenqiang
    REVIEW OF ACCOUNTING STUDIES, 2021, 26 (02) : 468 - 519
  • [39] Machine learning to detect the SINEs of cancer
    Douville, Christopher
    Lahouel, Kamel
    Kuo, Albert
    Grant, Haley
    Avigdor, Bracha Erlanger
    Curtis, Samuel D.
    Summers, Mahmoud
    Cohen, Joshua D.
    Wang, Yuxuan
    Mattox, Austin
    Dudley, Jonathan
    Dobbyn, Lisa
    Popoli, Maria
    Ptak, Janine
    Nehme, Nadine
    Silliman, Natalie
    Blair, Cherie
    Romans, Katharine
    Thoburn, Christopher
    Gizzi, Jennifer
    Schoen, Robert E.
    Tie, Jeanne
    Gibbs, Peter
    Ho-Pham, Lan T.
    Tran, Bich N. H.
    Tran, Thach S.
    Nguyen, Tuan V.
    Goggins, Michael
    Wolfgang, Christopher L.
    Wang, Tian-Li
    Shih, Ie-Ming
    Lennon, Anne Marie
    Hruban, Ralph H.
    Bettegowda, Chetan
    Kinzler, Kenneth W.
    Papadopoulos, Nickolas
    Vogelstein, Bert
    Tomasetti, Cristian
    SCIENCE TRANSLATIONAL MEDICINE, 2024, 16 (731)
  • [40] Machine learning to detect intrusion strategies
    Moyle, S
    Heasman, J
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2003, 2773 : 371 - 378